Graphical Abstract

It remains challenging to develop economical and bifunctional electrocatalysts toward oxygen/hydrogen evolution reactions (OER/HER). Herein, we construct Co9S8 nanoflakes decorated Co3O4 nanoarrays with enriched heterogeneous interface zones on Ni foam (Co9S8@Co3O4/NF) via a novel step-wise approach. The Co9S8@Co3O4/NF hybrid manifests excellent performance with low overpotentials of 130 mV for HER (10 mA·cm–2) and 331 mV for OER (100 mA·cm–2), delivering a small voltage of 1.52 V for water splitting at 10 mA·cm–2 as well as outstanding catalytic durability, which surpasses precious metals and previously reported earth-abundant nanocatalysts. Further experimental and theoretical investigations demonstrate that the excellent performance is attributed to the followings: (ⅰ) Highly conductive Ni facilitates the efficient charge transfer; (ⅱ) porous core-shell nanoarchitecture benefits the infiltration and transportation of gases/ions; (ⅲ) heterogeneous interface zones synergistically lower the chemisorption energy of hydrogen/oxygen intermediates. This work will shed light on the controllable synthesis and engineering of heterostructure nanomaterials for clean energy storage and conversion technologies.
Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, e1807134.
She, Y. Y.; Liu, J.; Wang, H. K.; Li, L.; Zhou, J. S.; Leung, M. K. H. Bubble-like Fe-encapsulated N, S-codoped carbon nanofibers as efficient bifunctional oxygen electrocatalysts for robust Zn–air batteries. Nano Res. 2020, 13, 2175–2182.
Li, X.; Wang, J. One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion. InfoMat 2020, 2, 3–32.
Sun, J. P.; Hu, X. T.; Huang, Z. D.; Huang, T. X.; Wang, X. K.; Guo, H. L.; Dai, F. N.; Sun, D. F. Atomically thin defect-rich Ni–Se–S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Res. 2020, 13, 2056–2062.
Dong, B. B.; Cui, J. Y.; Liu, T. F.; Gao, Y. Y.; Qi, Y. Y.; Li, D.; Xiong, F. Q.; Zhang, F. X.; Li, C. Development of novel perovskite–like oxide photocatalyst LiCuTa3O9 with dual functions of water reduction and oxidation under visible light irradiation. Adv. Energy Mater. 2018, 8, 1801660.
Ali, A.; Shen, P. K. Recent progress in graphene-based nanostructured electrocatalysts for overall water splitting. Electrochem. Energ. Rev. 2020, 3, 370–394.
Zou, Z. X.; Wang, X. Y.; Huang, J. S.; Wu, Z. C.; Gao, F. An Fe-doped nickel selenide nanorod/nanosheet hierarchical array for efficient overall water splitting. J. Mater. Chem. A 2019, 7, 2233–2241.
You, B.; Zhang, Y. D.; Yin, P. Q.; Jiang, D. E.; Sun, Y. J. Universal molecular-confined synthesis of interconnected porous metal oxides–N–C frameworks for electrocatalytic water splitting. Nano Energy 2018, 48, 600–606.
Han, N. N.; Yang, K. R.; Lu, Z. Y.; Li, Y. J.; Xu, W. W.; Gao, T. F.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W. et al. Nitrogen–doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.
Wang, Z. Y.; Yang, J.; Wang, W. Y.; Zhou, F. Y.; Zhou, H.; Xue, Z. G.; Xiong, C.; Yu, Z. Q.; Wu, Y. Hollow cobalt–nickel phosphide nanocages for efficient electrochemical overall water splitting. Sci. China Mater. 2020, 64, 861–869.
Menezes, P. W.; Indra, A.; Zaharieva, I.; Walter, C.; Loos, S.; Hoffmann, S.; Schlögl, R.; Dau, H.; Driess, M. Helical cobalt borophosphates to master durable overall water-splitting. Energy Environ. Sci. 2019, 12, 988–999.
Zhou, H. Q.; Yu, F.; Zhu, Q.; Sun, J. Y.; Qin, F.; Yu, L.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Water splitting by electrolysis at high current densities under 1.6 volts. Energy Environ. Sci. 2018, 11, 2858–2864.
Du, C. F.; Sun, X. L.; Yu, H.; Fang, W.; Jing, Y.; Wang, Y. H.; Li, S. Q.; Liu, X. H.; Yan, Q. Y. V4C3Tx MXene: A promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity. InfoMat 2020, 2, 950–959.
He, Y.; Zhang, J. F.; He, G. W.; Han, X. P.; Zheng, X. R.; Zhong, C.; Hu, W. B.; Deng, Y. D. Ultrathin Co3O4 nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc-air batteries. Nanoscale 2017, 9, 8623–8630.
Han, X. P.; Wu, X. Y.; Deng, Y. D.; Liu, J.; Lu, J.; Zhong, C.; Hu, W. B. Ultrafine Pt nanoparticle-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting. Adv. Energy Mater. 2018, 8, 1800935.
Zheng, X. R.; Wu, X. Y.; Han, X. P.; Deng, Y. D.; Wang, J. H. In-situ multi-deposition process for cobalt–sulfide synthesis with efficient bifunctional catalytic activity. Ferroelectrics 2018, 523, 119–125.
Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Zhang, Z. J.; Ni, B. J. Boride-based electrocatalysts: Emerging candidates for water splitting. Nano Res. 2020, 13, 293–314.
Zhou, Y. F.; Wang, Z. X.; Pan, Z. Y.; Liu, L.; Xi, J. Y.; Luo, X. L.; Shen, Y. Exceptional performance of hierarchical Ni–Fe (hydr)oxide@NiCu electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1806769.
Zhao, C. Y.; Zhang, Y. F.; Chen, L. F.; Yan, C. Y.; Zhang, P. X.; Ang, J. M.; Lu, X. H. Self-assembly-assisted facile synthesis of MoS2-based hybrid tubular nanostructures for efficient bifunctional electrocatalysis. ACS Appl. Mater. Inter. 2018, 10, 23731–23739.
Zang, X. N.; Chen, W. S.; Zou, X. L.; Hohman, J. N.; Yang, L. J.; Li, B. X.; Wei, M. S.; Zhu, C. H.; Liang, J. M.; Sanghadasa, M. et al. Self–assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 2018, 30, 1805188.
Huang, G.; Xiao, Z. H.; Chen, R.; Wang, S. Y. Defect engineering of cobalt-based materials for electrocatalytic water splitting. ACS Sustain. Chem. Eng. 2018, 6, 15954–15969.
Zhou, Q. Q.; Li, T. T.; Qian, J. J.; Hu, Y.; Guo, F. Y.; Zheng, Y. Q. Self–supported hierarchical CuOx@Co3O4 heterostructures as efficient bifunctional electrocatalysts for water splitting. J. Mater. Chem. A 2018, 6, 14431–14439.
Liu, X. J.; Xi, W.; Li, C.; Li, X. B.; Shi, J.; Shen, Y. L.; He, J.; Zhang, L. H.; Xie, L.; Sun, X. M. et al. Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy 2018, 44, 371–377.
Li, C. C.; Hou, J. X.; Wu, Z. X.; Guo, K.; Wang, D. L.; Zhai, T. Y.; Li, H. Q. Acid promoted Ni/NiO monolithic electrode for overall water splitting in alkaline medium. Sci. China Mater. 2017, 60, 918–928.
Zu, D.; Wang, H. Y.; Lin, S.; Ou, G.; Wei, H. H.; Sun, S. Q.; Wu, H. Oxygen-deficient metal oxides: Synthesis routes and applications in energy and environment. Nano Res. 2019, 12, 2150–2163.
Wu, M. J.; Zhang, G. X.; Tong, H.; Liu, X. H.; Du, L.; Chen, N.; Wang, J.; Sun, T. X.; Regier, T.; Sun, S. H. Cobalt (Ⅱ) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra–stable rechargeable Zn–air flow battery. Nano Energy 2021, 79, 105409.
Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.
Han, X. P.; He, G. W.; He, Y.; Zhang, J. F.; Zheng, X. R.; Li, L. L.; Zhong, C.; Hu, W. B.; Deng, Y. D.; Ma, T. Y. Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electro-catalysis. Adv. Energy Mater. 2018, 8, 1702222.
Wu, H. M.; Feng, C. Q.; Zhang, L.; Zhang, J. J.; Wilkinson, D. P. Non–noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem. Energ. Rev. 2021, doi: 10.1007/s41918-020-00086-z.
Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, H. Jr.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyrite–type cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251.
Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.
Zhang, S. L.; Zhai, D.; Sun, T. T.; Han, A. J.; Zhai, Y. L.; Cheong, W. C.; Liu, Y.; Su, C. L.; Wang, D. S.; Li, Y. D. In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Appl. Catal., B–Environ. 2019, 254, 186–193.
Chen, Y. N.; Xu, S. M.; Zhu, S. Z.; Jacob, R. J.; Pastel, G.; Wang, Y. B.; Li, Y. J.; Dai, J. Q.; Chen, F. J.; Xie, H. et al. Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Res. 2019, 12, 2259–2267.
Li, J. W.; Xu, P. M.; Zhou, R. F.; Li, R.; Qiu, L. J.; Jiang, S. P.; Yuan, D. S. Co9S8–Ni3S2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting. Electrochim. Acta 2019, 299, 152–162.
Li, Y. X.; Yin, J.; An, L.; Lu, M.; Sun, K.; Zhao, Y. Q.; Gao, D. Q.; Cheng, F. Y.; Xi, P. X. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 2018, 14, 1801070.
Xiong, Y.; Xu, L. L.; Jin, C. D.; Sun, Q. F. Interface-engineered atomically thin Ni3S2/MnO2 heterogeneous nanoarrays for efficient overall water splitting in alkaline media. Appl. Catal. B–Environ. 2019, 254, 329–338.
Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni, Fe) S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B–Environ. 2019, 247, 107–114.
Zhang, J.; Chen, Z. L.; Liu, C.; Zhao, J.; Liu, S. L.; Rao, D. W.; Nie, A.; Chen, Y. N.; Deng, Y. D.; Hu, W. B. Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting. Sci. China Mater. 2020, 63, 249–257.
Yin, Y. J.; Tan, Y.; Wei, Q. Y.; Zhang, S. C.; Wu, S. Q.; Huang, Q.; Hu, F. L.; Mi, Y. Nanovilli electrode boosts hydrogen evolution: A surface with superaerophobicity and superhydrophilicity. Nano Res. 2021, 14, 961–968.
Wu, X. Y.; Han, X. P.; Ma, X. Y.; Zhang, W.; Deng, Y. D.; Zhong, C.; Hu, W. B. Morphology-controllable synthesis of Zn-Co-mixed sulfide nanostructures on carbon fiber paper toward efficient rechargeable zinc-air batteries and water electrolysis. ACS Appl. Mater. Inter. 2017, 9, 12574–12583.
Han, X. P.; Zhang, W.; Ma, X. Y.; Zhong, C.; Zhao, N. Q.; Hu, W. B.; Deng, Y. D. Identifying the activation of bimetallic sites in NiCo2S4@g–C3N4–CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 2019, 31, 1808281.
Liu, T. Y.; Diao, P. Nickel foam supported Cr-doped NiCo2O4/ FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 2020, 13, 3299–3309.
Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristall. 2005, 220, 567–570.
Vanderbilt, D. Soft self–consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel–cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.
Rossmeisl, J.; Nørskov, J. K.; Taylor, C. D.; Janik, M. J.; Neurock, M. Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111). J. Phys. Chem. B 2006, 110, 21833–21839.
Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int., Ed. 2006, 45, 2897–2901.
Liu, S.; Cheng, H.; Xu, K.; Ding, H.; Zhou, J. Y.; Liu, B. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Dual modulation via electrochemical reduction activiation on electrocatalysts for enhanced oxygen evolution reaction. ACS Energy Lett. 2019, 4, 423–429.
Scott, J. A.; Angeloski, A.; Aharonovich, I.; Lobo, C. J.; McDonagh, A.; Toth, M. In situ study of the precursor conversion reactions during solventless synthesis of Co9S8, Ni3S2, Co and Ni nanowires. Nanoscale 2018, 10, 15669–15676.
Xie, B. Q.; Yu, M. Y.; Lu, L. H.; Feng, H. Z.; Yang, Y.; Chen, Y.; Cui, H. D.; Xiao, R. B.; Liu, J. Pseudocapacitive Co9S8/graphene electrode for high-rate hybrid supercapacitors. Carbon 2019, 141, 134–142.
Yao, T. H.; Li, Y. L.; Liu, D. Q.; Gu, Y. P.; Qin, S. C.; Guo, X.; Guo, H.; Ding, Y. Q.; Liu, Q. M.; Chen, Q. et al. High-performance free–standing capacitor electrodes of multilayered Co9S8 plates wrapped by carbonized poly(3, 4-ethylenedioxythiophene): poly(styrene sulfonate)/reduced graphene oxide. J. Power Sources 2018, 379, 167–173.
Feng, C.; Zhang, J. F.; He, Y.; Zhong, C.; Hu, W. B.; Liu, L.; Deng, Y. D. Sub-3 nm Co3O4 nanofilms with enhanced supercapacitor properties. ACS Nano 2015, 9, 1730–1739.
Zhang, X.; Zhao, Y. Q.; Xu, C. L. Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. Nanoscale 2014, 6, 3638–3646.
Yu, Y. Y.; Zhang, J. L.; Zhong, M.; Guo, S. W. Co3O4 nanosheet arrays on Ni foam as electrocatalyst for oxygen evolution reaction. Electrocatalysis 2018, 9, 653–661.
Zhang, Z. M.; Wang, Q.; Zhao, C. J.; Min, S. D.; Qian, X. Z. One–step hydrothermal synthesis of 3D petal-like Co9S8/RGO/Ni3S2 composite on nickel foam for high-performance supercapacitors. ACS Appl. Mater. Inter. 2015, 7, 4861–4868.
Pu, J.; Wang, Z. H.; Wu, K. L.; Yu, N.; Sheng, E. H. Co9S8 nanotube arrays supported on nickel foam for high-performance supercapacitors. Phys. Chem. Chem. Phys. 2014, 16, 785–791.
Gao, W. K.; Qin, J. F.; Wang, K.; Yan, K. L.; Liu, Z. Z.; Lin, J. H.; Chai, Y. M.; Liu, C. G.; Dong, B. Facile synthesis of Fe-doped Co9S8 nano-microspheres grown on nickel foam for efficient oxygen evolution reaction. Appl. Surf. Sci. 2018, 454, 46–53.
Lv, Q. L.; Yang, L.; Wang, W.; Lu, S. Q.; Wang, T. E.; Cao, L. X.; Dong, B. H. One-step construction of core/shell nanoarrays with a holey shell and exposed interfaces for overall water splitting. J. Mater. Chem. A 2019, 7, 1196–1205.
Weidler, N.; Schuch, J.; Knaus, F.; Stenner, P.; Hoch, S.; Maljusch, A.; Schaäfer, R.; Kaiser, B.; Jaegermann, W. X-ray photoelectron spectroscopic investigation of plasma–enhanced chemical vapor deposited NiOx, NiOx(OH)y, and CoNiOx(OH)y: influence of the chemical composition on the catalytic activity for the oxygen evolution reaction. J. Phys. Chem. C 2017, 121, 6455–6463.
Huang, Z. F.; Wang, J.; Peng, Y. C.; Jung, C. Y.; Fisher, A.; Wang, X. Design of efficient bifunctional oxygen reduction/evolution electro-catalyst: recent advances and perspectives. Adv. Energy Mater. 2017, 7, 1700544.
Wang, J.; Zhang, H.; Wang, X. Recent methods for the synthesis of noble-metal-free hydrogen-evolution electrocatalysts: From nanoscale to sub-nanoscale. Small Methods 2017, 6, 1700118.
Du, F.; Shi, L.; Zhang, Y. T.; Li, T.; Wang, J. L.; Wen, G. H.; Alsaedi, A.; Hayat, T.; Zhou, Y.; Zou, Z. G. Foam–like Co9S8/Ni3S2 hetero-structure nanowire arrays for efficient bifunctional overall water–splitting. Appl. Catal., B–Environ. 2019, 253, 246–252.