AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ formation of “electron conductive wires” threaded ZIF-8 membrane for multiplexed immunoassay of human interleukins

Yu Lv1,§Mingshi Deng1,§Xuefeng Wang2Xinghua Gao1Lingyan Feng1Wei Chen3( )Chung-Chiun Liu4Xinxin Li2Yuan Zhang1( )
Materials Genome Institute, Shanghai University, Shanghai 200444, China
State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Department of Emergency, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
Yu Lv and Mingshi Deng contributed equally to this paper.
Show Author Information

Graphical Abstract

We herein report a rational engineering strategy for the construction of an integrated electrochemical microsensing platform capable of direct profiling serum markers of inflammation. This method provides a rapid serum test for diagnosis and personalized therapy of inflammatory diseases, and can also be generalized to other immunoreaction-based biomarkers detections.

Abstract

To address the challenge of highly sensitive and accurate detection of biomarkers in complex environments, a rational engineering strategy for designing electrochemical immunosensing platform is proposed. Herein, we develop a microsensor chip through the combination of multiplexed electrodes and microfluidic channels for the parallel detection of human interleukins (IL-6 and IL-8). For the construction of an efficient sensing interface, the conductive silver nanowires (Ag NWs) wrapped with zeolitic imidazolate framework (ZIF-8) thin film (denoted as ZIF-8@Ag NWs) are prepared, and then employed for the multi-functionalization of electrodes. The immunodetection of ILs is based on the direct signal transduction ability of Ag NWs and specific interaction of periodically arranged Zn2+ ions in ZIF-8 films with biomolecules, which offer the high assay sensitivity and good specificity. The immunosensor chip achieves a wide detection range from pg/mL to ng/mL and possesses the ability to resist non-specific proteins adsorption in biological complex media. Further clinical serum samples assay verifies that the combination of IL-6 and IL-8 levels yields high diagnostic accuracy. Principal component analysis (PCA) reveals that 18 patient samples could be fully separated from healthy control samples. The low-cost, easily fabricated electrochemical immunosensing platform provides a rapid serum test for diagnosis and personalized therapy of inflammatory diseases, and can also be generalized to other immunoreaction-based biomarkers detections.

Electronic Supplementary Material

Download File(s)
12274_2022_5030_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Turner, M. D.; Nedjai, B.; Hurst, T.; Pennington, D. J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 2014, 1843, 2563–2582.

[2]

Lippitz, B. E. Cytokine patterns in patients with cancer: A systematic review. Lancet Oncol. 2013, 14, e218–e228.

[3]

Sheu, B. C.; Chang, W. C.; Cheng, C. Y.; Lin, H. H.; Chang, D. Y.; Huang, S. C. Cytokine regulation networks in the cancer microenvironment. Front. Biosci. 2008, 13, 6255–6268.

[4]

Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R. A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R. et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2016, 138, 984–1010.

[5]

Klein, T.; Wang, W.; Yu, L. N.; Wu, K.; Boylan, K. L. M.; Vogel, R. I.; Skubitz, A. P. N.; Wang, J. P. Development of a multiplexed giant magnetoresistive biosensor array prototype to quantify ovarian cancer biomarkers. Biosens. Bioelectron. 2019, 126, 301–307.

[6]

Sun, D.; Cao, F. H.; Xu, W. Q.; Chen, Q. D.; Shi, W.; Xu, S. P. Ultrasensitive and simultaneous detection of two cytokines secreted by single cell in microfluidic droplets via magnetic-field amplified SERS. Anal. Chem. 2019, 91, 2551–2558.

[7]

Russell, C.; Ward, A. C.; Vezza, V.; Hoskisson, P.; Alcorn, D.; Steenson, D. P.; Corrigan, D. K. Development of a needle shaped microelectrode for electrochemical detection of the sepsis biomarker interleukin-6 (IL-6) in real time. Biosens. Bioelectron. 2019, 126, 806–814.

[8]

Malhotra, R.; Patel, V.; Chikkaveeraiah, B. V.; Munge, B. S.; Cheong, S. C.; Zain, R. B.; Abraham, M. T.; Dey, D. K.; Gutkind, J. S.; Rusling, J. F. Ultrasensitive detection of cancer biomarkers in the clinic by use of a nanostructured microfluidic array. Anal. Chem. 2012, 84, 6249–6255.

[9]

Chen, R. P.; Du, X.; Cui, Y. J.; Zhang, X. Y.; Ge, Q. Y.; Dong, J.; Zhao, X. W. Vertical flow assay for inflammatory biomarkers based on nanofluidic channel array and SERS nanotags. Small 2020, 16, 2002801.

[10]

Wang, X.; Wang, Q. X.; Wang, Q. H.; Gao, F.; Gao, F.; Yang, Y. Z.; Guo, H. X. Highly dispersible and stable copper terephthalate metal-organic framework-graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl. Mater. Interfaces 2014, 6, 11573–11580.

[11]

Ying, Z.; Feng, L. Y.; Ji, D. Q.; Zhang, Y.; Chen, W.; Dai, Y. F.; Janyasupab, M.; Li, X. X.; Wen, W. J.; Liu, C. C. Phase-regulated sensing mechanism of MoS2 based nanohybrids toward point-of-care prostate cancer diagnosis. Small 2020, 16, 2000307.

[12]

Wehmeyer, K. R.; White, R. J.; Kissinger, P. T.; Heineman, A. R. In electrochemical affinity assays/sensors: Brief history and current status. Annu. Rev. Anal. Chem. 2021, 14, 109–131.

[13]

Ge, X. X.; Xia, Z. H.; Guo, S. J. Recent advances on black phosphorus for biomedicine and biosensing. Adv. Funct. Mater. 2019, 29, 1900318.

[14]

Xu, K.; Zhang, B. Y.; Mohiuddin, M.; Ha, N. M.; Wen, X. M.; Zhou, C. H.; Li, Y. X.; Ren, G. H.; Zhang, H. J.; Zavabeti, A. et al. Free-standing ultra-thin Janus indium oxysulfide for ultrasensitive visible-light-driven optoelectronic chemical sensing. Nano Today 2021, 37, 101096.

[15]

Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A. J. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: Recent progress, applications, and future perspective. Chem. Rev. 2019, 119, 120–194.

[16]

Ji, D. Q.; Ying, Z.; Zhang, Y.; Chen, W.; Janyasupab, M.; Gao, X. H.; Feng, L. Y.; Wen, W. J. RhIr@MoS2 nanohybrids based disposable microsensor for the point-of-care testing of NADH in real human serum. Chin. Chem. Lett. 2020, 31, 2115–2118.

[17]

Tite, T.; Chiticaru, E. A.; Burns, J. S.; Ioniţă, M. Impact of Nano-morphology, lattice defects and conductivity on the performance of graphene based electrochemical biosensors. J. Nanobiotechnol. 2019, 17, 101.

[18]

Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Nanosized hydrophobic gels: Advanced supramolecules for use in electrochemical bio- and immunosensing. TrAC Trends Anal. Chem. 2018, 102, 210–224.

[19]

Zhang, Y.; Wei, Q. The role of nanomaterials in electroanalytical biosensors: A mini review. J. Electroanal. Chem. 2016, 781, 401–409.

[20]

Su, S.; Sun, Q.; Gu, X. D.; Xu, Y. Q.; Shen, J. L.; Zhu, D.; Chao, J.; Fan, C. H.; Wang, L. H. Two-dimensional nanomaterials for biosensing applications. TrAC Trends Anal. Chem. 2019, 119, 115610.

[21]

Vikrant, K.; Tsang, D. C. W.; Raza, N.; Giri, B. S.; Kukkar, D.; Kim, K. H. Potential utility of metal-organic framework-based platform for sensing pesticides. ACS Appl. Mater. Interfaces 2018, 10, 8797–8817.

[22]

Xu, X. Y.; Ji, D. Q.; Zhang, Y.; Gao, X. H.; Xu, P. C.; Li, X. X.; Liu, C. C.; Wen, W. J. Detection of phenylketonuria markers using a ZIF-67 encapsulated PtPd alloy nanoparticle (PtPd@ZIF-67)-based disposable electrochemical microsensor. ACS Appl. Mater. Interfaces 2019, 11, 20734–20742.

[23]

Chen, W.; Ji, D. Q.; Zhang, Y.; Xu, P. C.; Gao, X. H.; Fang, J. H.; Li, X. X.; Feng, L. Y.; Wen, W. J. Schiff-base reaction induced selective sensing of trace dopamine based on a Pt41Rh59 alloy/ZIF-90 nanocomposite. Nanotechnology 2019, 30, 335708.

[24]

Rezki, M.; Septiani, N. L. W.; Iqbal, M.; Harimurti, S.; Sambegoro, P.; Adhika, D. R.; Yuliarto, B. Amine-functionalized Cu-MOF nanospheres towards label-free hepatitis B surface antigen electrochemical immunosensors. J. Mater. Chem. B 2021, 9, 5711–5721.

[25]

Duan, F. H.; Hu, M. Y.; Guo, C. P.; Song, Y. P.; Wang, M. H.; He, L. H.; Zhang, Z. H.; Pettinari, R.; Zhou, L. M. Chromium-based metal–organic framework embedded with cobalt phthalocyanine for the sensitively impedimetric cytosensing of colorectal cancer (CT26) cells and cell imaging. Chem. Eng. J. 2020, 398, 125452.

[26]

Meng, L. Y.; Turner, A. P. F.; Mak, W. C. Conducting polymer-reinforced laser-irradiated graphene as a heterostructured 3D transducer for flexible skin patch biosensors. ACS Appl. Mater. Interfaces 2021, 13, 54456–54465.

[27]

Zhao, Y.; Wang, X. J.; Yang, S. Z.; Kuttner, E.; Taylor, A. A.; Salemmilani, R.; Liu, X.; Moskovits, M.; Wu, B. H.; Dehestani, A. et al. Protecting the nanoscale properties of Ag nanowires with a solution-grown SnO2 monolayer as corrosion inhibitor. J. Am. Chem. Soc. 2019, 141, 13977–13986.

[28]

Iijima, M.; Kuroda, S. I. Scaffolds for oriented and close-packed immobilization of immunoglobulins. Biosens. Bioelectron. 2017, 89, 810–821.

[29]

Rahman, M.; Cui, D. X.; Zhou, S. K.; Zhang, A. M.; Chen, D. A graphene oxide coated gold nanostar based sensing platform for ultrasensitive electrochemical detection of circulating tumor DNA. Anal. Methods 2020, 12, 440–447.

[30]

Han, R.; Wang, G. X.; Xu, Z. Y.; Zhang, L. Y.; Li, Q.; Han, Y. F.; Luo, X. L. Designed antifouling peptides planted in conducting polymers through controlled partial doping for electrochemical detection of biomarkers in human serum. Biosens. Bioelectron. 2020, 164, 112317.

[31]

Shamsuddin, S. H.; Gibson, T. D.; Tomlinson, D. C.; McPherson, M. J.; Jayne, D. G.; Millner, P. A. Reagentless affimer- and antibody-based impedimetric biosensors for CEA-detection using a novel non-conducting polymer. Biosens. Bioelectron. 2021, 178, 113013.

[32]

Wu, Q.; Li, N. B.; Wang, Y.; Liu, Y.; Xu, Y. C.; Wei, S. T.; Wu, J. D.; Jia, G. R.; Fang, X. D.; Chen, F. F. et al. A 2D transition metal carbide MXene-based SPR biosensor for ultrasensitive carcinoembryonic antigen detection. Biosens. Bioelectron. 2019, 144, 111697.

[33]

Wang, Z. H.; Yang, S. N.; Wang, Y. Y.; Feng, W.; Li, B. S.; Jiao, J.; Han, B. K.; Chen, Q. A novel oriented immunosensor based on AuNPs-Thionine-CMWCNTs and staphylococcal protein A for interleukin-6 analysis in complicated biological samples. Anal. Chim. Acta 2020, 1140, 145–152.

[34]

Agarwal, G.; Naik, R. R.; Stone, M. O. Immobilization of histidine-tagged proteins on nickel by electrochemical dip pen nanolithography. J. Am. Chem. Soc. 2003, 125, 7408–7412.

[35]

Isaksen, M. L.; Fitzgerald, K. Purification and analysis of antibody fragments using proteins L, A and LA. In Antibody Engineering. Kontermann, R.; Dübel, S., Eds.; Springer: Berlin, 2001, 282–291.

[36]

Christopoulos, T. K.; Diamandis, E. P. Immunoassay configurations. In Immunoassay. Diamandis, E. P.; Christopoulos, T. K., Eds.; San Diego: Academic Press, 1996, 227–236.

[37]

Baraket, A.; Lee, M.; Zine, N.; Sigaud, M.; Bausells, J.; Errachid, A. A fully integrated electrochemical biosensor platform fabrication process for cytokines detection. Biosens. Bioelectron. 2017, 93, 170–175.

[38]

Tertis, M.; Leva, P. I.; Bogdan, D.; Suciu, M.; Graur, F.; Cristea, C. Impedimetric aptasensor for the label-free and selective detection of interleukin-6 for colorectal cancer screening. Biosens. Bioelectron. 2019, 137, 123–132.

[39]

Tanak, A. S., Muthukumar, S., Krishnan, S., Schully, K. L., Clark, D. V., Prasad, S. Multiplexed cytokine detection using electrochemical point-of-care sensing device towards rapid sepsis endotyping. Biosens Bioelectron 2021, 171, 112726.

[40]

Tatara, R.; Karayaylali, P.; Yu, Y.; Zhang, Y. R.; Giordano, L.; Maglia, F.; Jung, R.; Schmidt, J. P.; Lund, I.; Shao-Horn, Y. The effect of electrode–electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery. J. Electrochem. Soc. 2018, 166, A5090–A5098.

[41]

Chandra Barman, S.; Sharifuzzaman, M.; Zahed, M. A.; Park, C.; Yoon, S. H.; Zhang, S. P.; Kim, H.; Yoon, H.; Park, J. Y. A Highly selective and stable cationic polyelectrolyte encapsulated black phosphorene based impedimetric immunosensor for interleukin-6 biomarker detection. Biosens. Bioelectron. 2021, 186, 113287.

[42]

Zhang, C. Y.; Shi, D. M.; Li, X. Y.; Yuan, J. Microfluidic electrochemical magnetoimmunosensor for ultrasensitive detection of interleukin-6 based on hybrid of AuNPs and graphene. Talanta 2022, 240, 123173.

[43]

Molano Franco, D.; Arevalo Rodriguez, I.; Roqué I Figuls, M.; Zamora, J. Interleukin-6 for diagnosis of sepsis in critically ill adult patients. Cochrane. Db. Syst. Rev. 2015, 7, CD011811.

[44]

Miguel-Bayarri, V.; Casanoves-Laparra, E. B.; Pallás-Beneyto, L.; Sancho-Chinesta, S.; Martín-Osorio, L. F.; Tormo-Calandín, C.; Bautista-Rentero, D. Prognostic value of the biomarkers procalcitonin, interleukin-6 and C-reactive protein in severe sepsis. Med. Intensiva (Engl. Ed.) 2012, 36, 556–562.

[45]

Wong, D. T. Towards a simple, saliva-based test for the detection of oral cancer: ‘Oral fluid (saliva), which is the mirror of the body, is a perfect medium to be explored for health and disease surveillance’. Expert Rev. Mol. Diagn. 2006, 6, 267–272.

[46]

Nißler, R.; Bader, O.; Dohmen, M.; Walter, S. G.; Noll, C.; Selvaggio, G.; Groß, U.; Kruss, S. Remote near infrared identification of pathogens with multiplexed nanosensors. Nat. Commun. 2020, 11, 5995.

Nano Research
Pages 2866-2874
Cite this article:
Lv Y, Deng M, Wang X, et al. In-situ formation of “electron conductive wires” threaded ZIF-8 membrane for multiplexed immunoassay of human interleukins. Nano Research, 2023, 16(2): 2866-2874. https://doi.org/10.1007/s12274-022-5030-y
Topics:

1367

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 10 July 2022
Revised: 06 September 2022
Accepted: 09 September 2022
Published: 07 October 2022
© Tsinghua University Press 2022
Return