Journal Home > Online First

Owing to their high color purity, tunable bandgap, and high efficiency, quantum dots (QDs) have gained significant attention as color conversion materials for high-end display applications. Moreover, inkjet-printed QD pixels show great potential for realizing full-color mini/micro-light emitting diode (micro-LED)-based displays. As a color conversion layer, the photoluminescence intensity of QDs is limited by the insufficient absorptance of the excitation light due to the lack of scattering. Conventional scatterers, such as titanium dioxide microparticles, have been applied after additional surface engineering for sufficient dispersity to prevent nozzle clogging in inkjet printing process. In our work, as an alternative approach, we use inkjet printing for depositing a phase separating polymer ink based on polystyrene (PS) and polyethylene glycol (PEG). QD/polymer composite pixels with scattering micropores are realized. The morphology of the micropores can be tailored by the weight ratio between PS and PEG which enables the manipulation of scattering capability. With the presence of the microporous structure, the photoluminescence intensity of the QD film is enhanced by 110% in drop-cast films and by 35.3% in inkjet-printed QD pixel arrays compared to the reference samples.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced photoluminescence of a microporous quantum dot color conversion layer by inkjet printing

Show Author's information Junchi Chen1Qihao Jin1Yidenekachew. J. Donie2Orlando. T. Perales1Dmitry Busko3Bryce. S. Richards3Uli Lemmer1,3( )
Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131 Karlsruhe, Germany
Department of Chemical Engineering and Materials Science, University of Minnesota (UMN), 421 Washington Ave. SE, Minneapolis, MN 55455-0132, USA
Institute for Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Abstract

Owing to their high color purity, tunable bandgap, and high efficiency, quantum dots (QDs) have gained significant attention as color conversion materials for high-end display applications. Moreover, inkjet-printed QD pixels show great potential for realizing full-color mini/micro-light emitting diode (micro-LED)-based displays. As a color conversion layer, the photoluminescence intensity of QDs is limited by the insufficient absorptance of the excitation light due to the lack of scattering. Conventional scatterers, such as titanium dioxide microparticles, have been applied after additional surface engineering for sufficient dispersity to prevent nozzle clogging in inkjet printing process. In our work, as an alternative approach, we use inkjet printing for depositing a phase separating polymer ink based on polystyrene (PS) and polyethylene glycol (PEG). QD/polymer composite pixels with scattering micropores are realized. The morphology of the micropores can be tailored by the weight ratio between PS and PEG which enables the manipulation of scattering capability. With the presence of the microporous structure, the photoluminescence intensity of the QD film is enhanced by 110% in drop-cast films and by 35.3% in inkjet-printed QD pixel arrays compared to the reference samples.

Keywords: quantum dots, inkjet printing, porous structure, phase separation, display technology

References(42)

[1]

Smith, M. J.; Lin, C. H.; Yu, S. T.; Tsukruk, V. V. Composite structures with emissive quantum dots for light enhancement. Adv. Opt. Mater. 2019, 7, 1801072.

[2]

García de Arquer, F. P.; Talapin, D. V.; Klimov, V. I.; Arakawa, Y.; Bayer, M.; Sargent, E. H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541.

[3]

Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G. Quantum dots for display applications. Angew. Chem., Int. Ed. 2020, 59, 22312–22323.

[4]

Yang, J.; Choi, M. K.; Yang, U. J.; Kim, S. Y.; Kim, Y. S.; Kim, J. H.; Kim, D. H.; Hyeon, T. Toward full-color electroluminescent quantum dot displays. Nano Lett. 2021, 21, 26–33.

[5]

Wu, X. G.; Ji, H. L.; Yan, X. L.; Zhong, H. Z. Industry outlook of perovskite quantum dots for display applications. Nat. Nanotechnol. 2022, 17, 813–816.

[6]

Anwar, A. R.; Sajjad, M. T.; Johar, M. A.; Hernández-Gutiérrez, C. A.; Usman, M.; Łepkowski, S. P. Recent progress in micro-LED-based display technologies. Laser Photonics Rev. 2022, 16, 2100427.

[7]

Liu, Z. J.; Lin, C. H.; Hyun, B. R.; Sher, C. W.; Lv, Z. J.; Luo, B. Q.; Jiang, F. L.; Wu, T.; Ho, C. H.; Kuo, H. C. et al. Micro-light-emitting diodes with quantum dots in display technology. Light: Sci. Appl. 2020, 9, 83.

[8]

Wei, C. T.; Su, W. M.; Li, J. T.; Xu, B.; Shan, Q. S.; Wu, Y.; Zhang, F. J.; Luo, M. M.; Xiang, H. Y.; Cui, Z. et al. A universal ternary-solvent-ink strategy toward efficient inkjet-printed perovskite quantum dot light-emitting diodes. Adv. Mater. 2022, 34, 2107798.

[9]

Roh, H.; Ko, D.; Shin, D. Y.; Chang, J. H.; Hahm, D.; Bae, W. K.; Lee, C.; Kim, J. Y.; Kwak, J. Enhanced performance of pixelated quantum dot light-emitting diodes by inkjet printing of quantum dot-polymer composites. Adv. Opt. Mater. 2021, 9, 2002129.

[10]

Fan, J. P.; Qian, L. Quantum dot patterning by direct photolithography. Nat. Nanotechnol. 2022, 17, 906–907.

[11]

Myeong, S.; Chon, B.; Kumar, S.; Son, H. J.; Kang, S. O.; Seo, S. Quantum dot photolithography using a quantum dot photoresist composed of an organic–inorganic hybrid coating layer. Nanoscale Adv. 2022, 4, 1080–1087.

[12]

Li, J. S.; Tang, Y.; Li, Z. T.; Li, J. X.; Ding, X. R.; Yu, B. H.; Yu, S. D.; Ou, J. Z.; Kuo, H. C. Toward 200 lumens per watt of quantum-dot white-light-emitting diodes by reducing reabsorption loss. ACS Nano 2021, 15, 550–562.

[13]

Li, X.; Liu, J. L.; Jiang, G. C.; Lin, X. Y.; Wang, J.; Li, Z. Q. Self-supported CsPbBr3/Ti3C2T x MXene aerogels towards efficient photocatalytic CO2 reduction. J. Colloid Interface Sci. 2023, 643, 174–182.

[14]

Yang, H. C.; Zhou, M.; Tang, H. D.; Sun, M. Y.; Liu, P.; Liu, Y. Z.; Chen, L. X.; Li, D. Z.; Wu, D.; Hao, J. J. et al. Enhanced light emission of quantum dot films by scattering of poly(zinc methacrylate) coating CdZnSeS/ZnS quantum dots and high refractive index BaTiO3 nanoparticles. RSC Adv. 2020, 10, 31705–31710.

[15]

Meinardi, F.; Colombo, A.; Velizhanin, K. A.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V. I.; Brovelli, S. Large-area luminescent solar concentrators based on “Stokes-shift-engineered” nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 2014, 8, 392–399.

[16]

Li, J. S.; Tang, Y.; Li, Z. T.; Ding, X. R.; Yu, B. H.; Lin, L. W. Largely enhancing luminous efficacy, color-conversion efficiency, and stability for quantum-dot white LEDs using the two-dimensional hexagonal pore structure of sba-15 mesoporous particles. ACS Appl. Mater. Interfaces 2019, 11, 18808–18816.

[17]

Hyun, B. R.; Sher, C. W.; Chang, Y. W.; Lin, Y. H.; Liu, Z. J.; Kuo, H. C. Dual role of quantum dots as color conversion layer and suppression of input light for full-color micro-LED displays. J. Phys. Chem. Lett. 2021, 12, 6946–6954.

[18]

Liang, G. W.; Tang, Y.; Chen, P. S.; Li, J. S.; Yuan, Y. K.; Yu, S. D.; Xu, L.; Li, Z. T. Polystyrene-fiber-rod hybrid composite structure for optical enhancement in quantum-dot-converted light-emitting diodes. ACS Appl. Polym. Mater. 2022, 4, 91–99.

[19]

Yu, S. D.; Zhuang, B. S.; Chen, J. C.; Li, Z. T.; Rao, L. S.; Yu, B. H.; Tang, Y. Butterfly-inspired micro-concavity array film for color conversion efficiency improvement of quantum-dot-based light-emitting diodes. Opt. Lett. 2017, 42, 4962–4965.

[20]

Yin, M. J.; Pan, T.; Yu, Z. W.; Peng, X. M.; Zhang, X.; Xie, W. F.; Liu, S. H.; Zhang, L. T. Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer. Org. Electron. 2018, 62, 407–411.

[21]

Li, Y. Y.; Yu, S.; Veinot, J. G. C.; Linnros, J.; Berglund, L.; Sychugov, I. Luminescent transparent wood. Adv. Opt. Mater. 2017, 5, 1600834.

[22]

Kumar, P.; Ganesh, N.; Narayan, K. S. Electrospun fibers containing emissive hybrid perovskite quantum dots. ACS Appl. Mater. Interfaces 2019, 11, 24468–24477.

[23]

Theobald, D.; Yu, S. D.; Gomard, G.; Lemmer, U. Design of selective reflectors utilizing multiple scattering by core–shell nanoparticles for color conversion films. ACS Photonics 2020, 7, 1452–1460.

[24]

Yu, B. H.; Lu, Z.; Liang, G. W.; Yuan, Y. K.; Wang, H.; He, J. Q.; Yang, S. Luminous efficacy enhancement for LED lamps using highly reflective quantum dot-based photoluminescent films. Opt. Express 2021, 29, 29007–29020.

[25]

Yu, S. D.; Fritz, B.; Johnsen, S.; Busko, D.; Richards, B. S.; Hippler, M.; Wiegand, G.; Tang, Y.; Li, Z. T.; Lemmer, U. et al. Enhanced photoluminescence in quantum dots-porous polymer hybrid films fabricated by microcellular foaming. Adv. Opt. Mater. 2019, 7, 1900223.

[26]

Kim, G. Y.; Kim, S.; Choi, J.; Kim, M.; Lim, H.; Nam, T. W.; Choi, W.; Cho, E. N.; Han, H. J.; Lee, C. et al. Order-of-magnitude, broadband-enhanced light emission from quantum dots assembled in multiscale phase-separated block copolymers. Nano Lett. 2019, 19, 6827–6838.

[27]

Wang, S. Z.; Yousefi Amin, A. A.; Wu, L. Z.; Cao, M. H.; Zhang, Q.; Ameri, T. Perovskite nanocrystals: Synthesis, stability, and optoelectronic applications. Small Struct. 2021, 2, 2000124.

[28]

Li, J. X.; Li, Z. T.; Qiu, J. Y.; Li, J. S. Photothermal optimization of quantum dot converters for high-power solid-state light sources. Adv. Opt. Mater. 2022, 10, 2102201.

[29]

Hu, Z. P.; Yin, Y. M.; Ali, M. U.; Peng, W. X.; Zhang, S. J.; Li, D. Z.; Zou, T. Y.; Li, Y. Y.; Jiao, S. B.; Chen, S. J. et al. Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale 2020, 12, 2103–2110.

[30]

Yang, P. H.; Zhang, L.; Kang, D. J.; Strahl, R.; Kraus, T. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays. Adv. Opt. Mater. 2020, 8, 1901429.

[31]

Zhang, Q. S.; Jin, Q. H.; Mertens, A.; Rainer, C.; Huber, R.; Fessler, J.; Hernandez-Sosa, G.; Lemmer, U. Fabrication of Bragg mirrors by multilayer inkjet printing. Adv. Mater. 2022, 34, 2201348.

[32]

Zhang, Q. S.; Schambach, M.; Schlisske, S.; Jin, Q. H.; Mertens, A.; Rainer, C.; Hernandez-Sosa, G.; Heizmann, M.; Lemmer, U. Fabrication of microlens arrays with high quality and high fill factor by inkjet printing. Adv. Opt. Mater. 2022, 10, 2200677.

[33]

Donie, Y. J.; Schlisske, S.; Siddique, R. H.; Mertens, A.; Narasimhan, V.; Schackmar, F.; Pietsch, M.; Hossain, I. M.; Hernandez-Sosa, G.; Lemmer, U. et al. Phase-separated nanophotonic structures by inkjet printing. ACS Nano 2021, 15, 7305–7317.

[34]

Kim, J. K.; Taki, K.; Ohshima, M. Preparation of a unique microporous structure via two step phase separation in the course of drying a ternary polymer solution. Langmuir 2007, 23, 12397–12405.

[35]

Kim, J. K.; Taki, K.; Nagamine, S.; Ohshima, M. Preparation of a polymeric membrane with a fine porous structure by dry casting. J. Appl. Polym. Sci. 2009, 111, 2518–2526.

[36]

de Mello, J. C.; Wittmann, H. F.; Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 1997, 9, 230–232.

[37]

Faulkner, D. O.; McDowell, J. J.; Price, A. J.; Perovic, D. D.; Kherani, N. P.; Ozin, G. A. Measurement of absolute photoluminescence quantum yields using integrating spheres—Which way to go? Laser Photonics Rev. 2012, 6, 802–806.

[38]

Li, J. S.; Tang, Y.; Li, Z. T.; Cao, K.; Yan, C. M.; Ding, X. R. Full spectral optical modeling of quantum-dot-converted elements for light-emitting diodes considering reabsorption and reemission effect. Nanotechnology 2018, 29, 295707.

[39]

Mohan, R.; Drbohlavova, J.; Hubalek, J. Water-dispersible TiO2 nanoparticles via a biphasic solvothermal reaction method. Nanoscale Res. Lett. 2013, 8, 503.

[40]

Singh, S. P.; Sharma, S. K.; Kim, D. Y. Carrier mechanism of ZnO nanoparticles-embedded PMMA nanocomposite organic bistable memory device. Solid State Sci. 2020, 99, 106046.

[41]

Auger, J. C.; McLoughlin, D. Theoretical analysis of light scattering properties of encapsulated rutile titanium dioxide pigments in dependent light scattering regime. Prog. Org. Coat. 2014, 77, 1619–1628.

[42]

Jin, Q. H.; Zhang, Q. S.; Chen, J. C.; Gehring, T.; Eizaguirre, S.; Huber, R.; Gomard, G.; Lemmer, U.; Kling, R. High dynamic range smart window display by surface hydrophilization and inkjet printing. Adv. Mater. Technol. 2022, 7, 2101026.

File
6671_ESM.pdf (7 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 29 June 2023
Revised: 12 March 2024
Accepted: 30 March 2024
Published: 03 May 2024

Copyright

© The Author(s) 2024

Acknowledgements

Acknowledgements

The authors gratefully acknowledge support from the Karlsruhe School of Optics & Photonics and the China Scholarship Council. This research has also been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy via the Excellence Cluster 3D Matter Made to Order (EXC-2082/1-390761711) and through the DFG priority program SPP 1839 “Tailored disorder”.

Rights and permissions

Copyright: © 2024 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return