Journal Home > Volume 1 , Issue 3

Proton exchange membrane water electrolyzer (PEMWE) represents a promising technology for the sustainable production of hydrogen, which is capable of efficiently coupling to intermittent electricity from renewable energy sources (e.g., solar and wind). The technology with compact stack structure has many notable advantages, including large current density, high hydrogen purity, and great conversion efficiency. However, the use of expensive electrocatalysts and construction materials leads to high hydrogen production costs and limited application. In this review, recent advances made in key materials of PEMWE are summarized. First, we present a brief overview about the basic principles, thermodynamics, and reaction kinetics of PEMWE. We then describe the cell components of PEMWE and their respective functions, as well as discuss the research status of key materials such as membrane, electrocatalysts, membrane electrode assemblies, gas diffusion layer, and bipolar plate. We also attempt to clarify the degradation mechanisms of PEMWE under a real operating environment, including catalyst degradation, membrane degradation, bipolar plate degradation, and gas diffusion layer degradation. We finally propose several future directions for developing PEMWE through devoting more efforts to the key materials.


menu
Abstract
Full text
Outline
About this article

Status and perspectives of key materials for PEM electrolyzer

Show Author's information Kexin Zhang1,§Xiao Liang1,§Lina Wang1Ke Sun1Yuannan Wang1Zhoubing Xie1Qiannan Wu1Xinyu Bai1Mohamed S. Hamdy2Hui Chen1( )Xiaoxin Zou1( )
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia

§ Kexin Zhang and Xiao Liang contributed equally to this work.

Abstract

Proton exchange membrane water electrolyzer (PEMWE) represents a promising technology for the sustainable production of hydrogen, which is capable of efficiently coupling to intermittent electricity from renewable energy sources (e.g., solar and wind). The technology with compact stack structure has many notable advantages, including large current density, high hydrogen purity, and great conversion efficiency. However, the use of expensive electrocatalysts and construction materials leads to high hydrogen production costs and limited application. In this review, recent advances made in key materials of PEMWE are summarized. First, we present a brief overview about the basic principles, thermodynamics, and reaction kinetics of PEMWE. We then describe the cell components of PEMWE and their respective functions, as well as discuss the research status of key materials such as membrane, electrocatalysts, membrane electrode assemblies, gas diffusion layer, and bipolar plate. We also attempt to clarify the degradation mechanisms of PEMWE under a real operating environment, including catalyst degradation, membrane degradation, bipolar plate degradation, and gas diffusion layer degradation. We finally propose several future directions for developing PEMWE through devoting more efforts to the key materials.

Keywords: hydrogen production, gas diffusion layer, proton exchange membrane water electrolyzer (PEMWE), membrane electrode assembly, bipolar plate

References(199)

[1]

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

[2]

Li, Y. R.; Zhang, D. S.; Qiao, W.; Xiang, H. W.; Besenbacher, F.; Li, Y. W.; Su, R. Nanostructured heterogeneous photocatalyst materials for green synthesis of valuable chemicals. Chem. Synth. 2022, 2, 9.

[3]
Hydrogen Council. The Hydrogen Council Announces Significant Membership Growth Covering New Geographies and Financial Sector Ahead of 3rd Anniversary CEO Event [Online]. https://hydrogencouncil.com/en/newmemberannouncement2020/ (accessed Jan 15, 2020).
[4]

Das, D.; Veziroglu, T. N. Advances in biological hydrogen production processes. Int. J. Hydrogen Energy 2008, 33, 6046–6057.

[5]

Abbasi, R.; Setzler, B. P.; Lin, S. S.; Wang, J. H.; Zhao, Y.; Xu, H.; Pivovar, B.; Tian, B. Y.; Chen, X.; Wu, G. et al. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv. Mater. 2019, 31, 1805876.

[6]

Kumar, S. S.; Himabindu, V. Hydrogen production by PEM water electrolysis-a review. Mater. Sci. Energy Technol. 2019, 2, 442–454.

[7]

Chi, J.; Yu, H. M. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390–394.

[8]

Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326.

[9]

Guo, F. F.; Wu, Y. Y.; Chen, H.; Liu, Y. P.; Yang, L.; Ai, X.; Zou, X. X. High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces. Energy Environ. Sci. 2019, 12, 684–692.

[10]

Chen, X.; Yu, M.; Yan, Z. H.; Guo, W. Y.; Fan, G. L.; Ni, Y. X.; Liu, J. D.; Zhang, W.; Xie, W.; Cheng, F. Y. et al. Boosting electrocatalytic oxygen evolution by cation defect modulation via electrochemical etching. CCS Chem. 2021, 3, 675–685.

[11]

Lei, J.; Zeng, M. Q.; Fu, L. Two-dimensional metal-organic frameworks as electrocatalysts for oxygen evolution reaction. Chem. Res. Chin. Univ. 2020, 36, 504–510.

[12]

Du, N. Y.; Roy, C.; Peach, R.; Turnbull, M.; Thiele, S.; Bock, C. Anion-exchange membrane water electrolyzers. Chem. Rev. 2022, 122, 11830–11895.

[13]

Ni, M.; Leung, M. K. H.; Leung, D. Y. C. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int. J. Hydrogen Energy 2008, 33, 2337–2354.

[14]

Russell, J. H.; Nuttall, L. J.; Fickett, A. P. Hydrogen generation by solid polymer electrolyte water electrolysis. Am. Chem. Soc. Div. Fuel Chem. Preprints 1973, 18, 24–40.

[15]

Liu, Y. P.; Liang, X.; Chen, H.; Gao, R. Q.; Shi, L.; Yang, L.; Zou, X. X. Iridium-containing water-oxidation catalysts in acidic electrolyte. Chin. J. Catal. 2021, 42, 1054–1077.

[16]

An, L.; Wei, C.; Lu, M.; Liu, H. W.; Chen, Y. B.; Scherer, G. G.; Fisher, A. C.; Xi, P. X.; Xu, Z. J.; Yan, C. H. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 2021, 33, 2006328.

[17]

Gao, J. J.; Tao, H. B.; Liu, B. Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2021, 33, 2003786.

[18]

She, L. N.; Zhao, G. Q.; Ma, T. Y.; Chen, J.; Sun, W. P.; Pan, H. G. On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv. Funct. Mater. 2022, 32, 2108465.

[19]

Chen, Z. J.; Duan, X. G.; Wei, W.; Wang, S. B.; Ni, B. J. Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives. Nano Energy 2020, 78, 105392.

[20]

Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, 2004.

[21]

Ferrero, D.; Lanzini, A.; Santarelli, M.; Leone, P. A comparative assessment on hydrogen production from low-and high-temperature electrolysis. Int. J. Hydrogen Energy 2013, 38, 3523–3536.

[22]

Bernt, M.; Gasteiger, H. A. Influence of ionomer content in IrO2/TiO2 electrodes on PEM water electrolyzer performance. J. Electrochem. Soc. 2016, 163, F3179–F3189.

[23]

Guidelli, R.; Compton, R. G.; Feliu, J. M.; Gileadi, E.; Lipkowski, J.; Schmickler, W.; Trasatti, S. Defining the transfer coefficient in electrochemistry: An assessment (IUPAC Technical Report). Pure Appl. Chem. 2014, 86, 245–258.

[24]

Guidelli, R.; Compton, R. G.; Feliu, J. M.; Gileadi, E.; Lipkowski, J.; Schmickler, W.; Trasatti, S. Definition of the transfer coefficient in electrochemistry (IUPAC Recommendations 2014). Pure Appl. Chem. 2014, 86, 259–262.

[25]

Fritz Ⅲ, D. L.; Mergel, J.; Stolten, D. PEM electrolysis simulation and validation. ECS Trans. 2014, 58, 1–9.

[26]

Eigeldinger, J.; Vogt, H. The bubble coverage of gas-evolving electrodes in a flowing electrolyte. Electrochim. Acta 2000, 45, 4449–4456.

[27]

Moschovi, A. M.; Zagoraiou, E.; Polyzou, E.; Yakoumis, I. Recycling of critical raw materials from hydrogen chemical storage stacks (PEMWE), Membrane Electrode Assemblies (MEA) and Electrocatalysts. IOP Conf. Ser. : Mater. Sci. Eng. 2021, 1024, 012008.

[28]

Jung, G. B.; Chan, S. H.; Lai, C. J.; Yeh, C. C.; Yu, J. W. Innovative Membrane Electrode Assembly (MEA) fabrication for proton exchange membrane water electrolysis. Energies 2019, 12, 4218.

[29]

Kang, Z. Y.; Mo, J. K.; Yang, G. Q.; Retterer, S. T.; Cullen, D. A.; Toops, T. J.; Green, J. B. Jr.; Mench, M. M.; Zhang, F. Y. Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting. Energy Environ. Sci. 2017, 10, 166–175.

[30]
European Commission. Fuel Cells and Hydrogen Joint Undertaking, annual activity report 2014. Brussels, Belgium, 2014.
[31]

Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J. et al. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers. J. Power Sources 2016, 307, 815–825.

[32]

Kumar, A.; Ricketts, M.; Hirano, S. Ex situ evaluation of nanometer range gold coating on stainless steel substrate for automotive polymer electrolyte membrane fuel cell bipolar plate. J. Power Sources 2010, 195, 1401–1407.

[33]

Al Munsur, A. Z.; Goo, B. H.; Kim, Y.; Kwon, O. J.; Paek, S. Y.; Lee, S. Y.; Kim, H. J.; Kim, T. H. Nafion-based proton-exchange membranes built on cross-linked semi-interpenetrating polymer networks between Poly(acrylic acid) and Poly(vinyl alcohol). ACS Appl. Mater. Interfaces 2021, 13, 28188–28200.

[34]

Park, J. E.; Kim, J.; Han, J.; Kim, K.; Park, S.; Kim, S.; Park, H. S.; Cho, Y. H.; Lee, J. C.; Sung, Y. E. High-performance proton-exchange membrane water electrolysis using a sulfonated poly(arylene ether sulfone) membrane and ionomer. J. Membr. Sci. 2021, 620, 118871.

[35]

Klose, C.; Saatkamp, T.; Münchinger, A.; Bohn, L.; Titvinidze, G.; Breitwieser, M.; Kreuer, K. D.; Vierrath, S. All-hydrocarbon MEA for PEM water electrolysis combining low hydrogen crossover and high efficiency. Adv. Energy Mater. 2020, 10, 1903995.

[36]

Kusoglu, A.; Weber, A. Z. New insights into perfluorinated sulfonic-acid ionomers. Chem. Rev. 2017, 117, 987–1104.

[37]

Mauritz, K. A.; Moore, R. B. State of understanding of Nafion. Chem. Rev. 2004, 104, 4535–4586.

[38]

Ma, L. R.; Sui, S.; Zhai, Y. C. Investigations on high performance proton exchange membrane water electrolyzer. Int. J. Hydrogen Energy 2009, 34, 678–684.

[39]

Ito, K.; Sakaguchi, T.; Tsuchiya, Y.; Inada, A.; Nakajima, H.; Saito, R. Gas crossover suppression by controlling wettability of cathode current collector. ECS Trans. 2016, 75, 1107–1112.

[40]

Garbe, S.; Babic, U.; Nilsson, E.; Schmidt, T. J.; Gubler, L. Communication-Pt-doped thin membranes for gas crossover suppression in polymer electrolyte water electrolysis. J. Electrochem. Soc. 2019, 166, F873–F875.

[41]

Klose, C.; Trinke, P.; Böhm, T.; Bensmann, B.; Vierrath, S.; Hanke-Rauschenbach, R.; Thiele, S. Membrane interlayer with Pt recombination particles for reduction of the anodic hydrogen content in PEM water electrolysis. J. Electrochem. Soc. 2018, 165, F1271–F1277.

[42]

Bukola, S.; Creager, S. E. Graphene-based proton transmission and hydrogen crossover mitigation in electrochemical hydrogen pump cells. ECS Trans. 2019, 92, 439–444.

[43]

Gagliardi, G. G.; Ibrahim, A.; Borello, D.; El-Kharouf, A. Composite polymers development and application for polymer electrolyte membrane technologies-a review. Molecules 2020, 25, 1712.

[44]

Baglio, V.; Ornelas, R.; Matteucci, F.; Martina, F.; Ciccarella, G.; Zama, I.; Arriaga, L. G.; Antonucci, V.; Aricò, A. S. Solid polymer electrolyte water electrolyser based on nafion-TiO2 composite membrane for high temperature operation. Fuel Cells 2009, 9, 247–252.

[45]

Antonucci, V.; Di Blasi, A.; Baglio, V.; Ornelas, R.; Matteucci, F.; Ledesma-Garcia, J.; Arriaga, L. G.; Aricò, A. S. High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser. Electrochim. Acta 2008, 53, 7350–7356.

[46]

Aili, D.; Hansen, M. K.; Pan, C.; Li, Q. F.; Christensen, E.; Jensen, J. O.; Bjerrum, N. J. Phosphoric acid doped membranes based on Nafion®, PBI and their blends - membrane preparation, characterization and steam electrolysis testing. Int. J. Hydrogen Energy 2011, 36, 6985–6993.

[47]

Immerz, C.; Paidar, M.; Papakonstantinou, G.; Bensmann, B.; Bystron, T.; Vidakovic-Koch, T.; Bouzek, K.; Sundmacher, K.; Hanke-Rauschenbach, R. Effect of the MEA design on the performance of PEMWE single cells with different sizes. J. Appl. Electrochem. 2018, 48, 701–711.

[48]

Bühler, M.; Holzapfel, P.; McLaughlin, D.; Thiele, S. From catalyst coated membranes to porous transport electrode based configurations in PEM water electrolyzers. J. Electrochem. Soc. 2019, 166, F1070–F1078.

[49]

Holzapfel, P.; Bühler, M.; Van Pham, C.; Hegge, F.; Böhm, T.; McLaughlin, D.; Breitwieser, M.; Thiele, S. Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis. Electrochem. Commun. 2020, 110, 106640.

[50]

Steenberg, T.; Hjuler, H. A.; Terkelsen, C.; Sánchez, M. T. R.; Cleemann, L. N.; Krebs, F. C. Roll-to-roll coated PBI membranes for high temperature PEM fuel cells. Energy Environ. Sci. 2012, 5, 6076–6080.

[51]

Mauger, S. A.; Neyerlin, K. C.; Yang-Neyerlin, A. C.; More, K. L.; Ulsh, M. Gravure coating for roll-to-roll manufacturing of proton-exchange-membrane fuel cell catalyst layers. J. Electrochem. Soc. 2018, 165, F1012–F1018.

[52]

Zainoodin, A. M.; Tsujiguchi, T.; Masdar, M. S.; Kamarudin, S. K.; Osaka, Y.; Kodama, A. Performance of a direct formic acid fuel cell fabricated by ultrasonic spraying. Int. J. Hydrogen Energy 2018, 43, 6413–6420.

[53]

Park, J.; Kang, Z. Y.; Bender, G.; Ulsh, M.; Mauger, S. A. Roll-to-roll production of catalyst coated membranes for low-temperature electrolyzers. J. Power Sources 2020, 479, 228819.

[54]

Bessarabov, D.; Kruger, A.; Luopa, S. M.; Park, J.; Molnar, A. A.; Lewinski, K. A. Gas crossover mitigation in PEM water electrolysis: Hydrogen cross-over benchmark study of 3M's Ir-NSTF based electrolysis catalyst-coated membranes. ECS Trans. 2016, 75, 1165–1173.

[55]

Lewinski, K. A.; van der Vliet, D.; Luopa, S. M. NSTF advances for PEM electrolysis - the effect of alloying on activity of NSTF electrolyzer catalysts and performance of NSTF based PEM electrolyzers. ECS Trans. 2015, 69, 893–917.

[56]

Bessarabov, D.; Wang, H. J.; Li, H.; Zhao, N. N. PEM Electrolysis for Hydrogen Production: Principles and Applications; CRC Press: Boca Raton, 2016.

[57]

Kang, Z. Y.; Yu, S. L.; Yang, G. Q.; Li, Y. F.; Bender, G.; Pivovar, B. S.; Green, J. B.; Zhang, F. Y. Performance improvement of proton exchange membrane electrolyzer cells by introducing in-plane transport enhancement layers. Electrochim. Acta 2019, 316, 43–51.

[58]

Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.

[59]

Feng, Q.; Yuan, X. Z.; Liu, G. Y.; Wei, B.; Zhang, Z.; Li, H.; Wang, H. J. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies. J. Power Sources 2017, 366, 33–55.

[60]

Mo, J. K.; Kang, Z. Y.; Yang, G. Q.; Retterer, S. T.; Cullen, D. A.; Toops, T. J.; Green, J. B.; Zhang, F. Y. Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting. Appl. Energy 2016, 177, 817–822.

[61]

Hoeh, M. A.; Arlt, T.; Manke, I.; Banhart, J.; Fritz, D. L.; Maier, W.; Lehnert, W. In operando synchrotron X-ray radiography studies of polymer electrolyte membrane water electrolyzers. Electrochem. Commun. 2015, 55, 55–59.

[62]

Nie, J. H.; Chen, Y. Numerical modeling of three-dimensional two-phase gas-liquid flow in the flow field plate of a PEM electrolysis cell. Int. J. Hydrogen Energy 2010, 35, 3183–3197.

[63]

Mo, J. K.; Steen, S. M.; Zhang, F. Y.; Toops, T. J.; Brady, M. P.; Green, J. B. Electrochemical investigation of stainless steel corrosion in a proton exchange membrane electrolyzer cell. Int. J. Hydrogen Energy 2015, 40, 12506–12511.

[64]

Grigoriev, S. A.; Millet, P.; Volobuev, S. A.; Fateev, V. N. Optimization of porous current collectors for PEM water electrolysers. Int. J. Hydrogen Energy 2009, 34, 4968–4973.

[65]

Ito, H.; Maeda, T.; Nakano, A.; Kato, A.; Yoshida, T. Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer. Electrochim. Acta 2013, 100, 242–248.

[66]

Park, J.; Oh, H.; Ha, T.; Lee, Y. I.; Min, K. A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation. Appl. Energy 2015, 155, 866–880.

[67]

Lapicque, F.; Belhadj, M.; Bonnet, C.; Pauchet, J.; Thomas, Y. A critical review on gas diffusion micro and macroporous layers degradations for improved membrane fuel cell durability. J. Power Sources 2016, 336, 40–53.

[68]

Jung, H. Y.; Huang, S. Y.; Ganesan, P.; Popov, B. N. Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation. J. Power Sources 2009, 194, 972–975.

[69]

Wu, J. F.; Yuan, X. Z.; Martin, J. J.; Wang, H. J.; Zhang, J. J.; Shen, J.; Wu, S. H.; Merida, W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power Sources 2008, 184, 104–119.

[70]

Ayers, K. E.; Anderson, E. B.; Capuano, C.; Carter, B.; Dalton, L.; Hanlon, G.; Manco, J.; Niedzwiecki, M. Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans. 2010, 33, 3–15.

[71]

Yang, G. Q.; Yu, S. L.; Mo, J. K.; Kang, Z. Y.; Dohrmann, Y.; List, F. A.; Green, J. B.; Babu, S. S.; Zhang, F. Y. Bipolar plate development with additive manufacturing and protective coating for durable and high-efficiency hydrogen production. J. Power Sources 2018, 396, 590–598.

[72]

Nikiforov, A. V.; Petrushina, I. M.; Christensen, E.; Tomás-García, A. L.; Bjerrum, N. J. Corrosion behaviour of construction materials for high temperature steam electrolysers. Int. J. Hydrogen Energy 2011, 36, 111–119.

[73]

Yang, G. Q.; Mo, J. K.; Kang, Z. Y.; Dohrmann, Y.; List Ⅲ, F. A.; Green, J. B. Jr.; Babu, S. S.; Zhang, F. Y. Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting. Appl. Energy 2018, 215, 202–210.

[74]

Toghyani, S.; Afshari, E.; Baniasadi, E.; Atyabi, S. A. Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer. Electrochim. Acta 2018, 267, 234–245.

[75]

Wu, H. W. A review of recent development: Transport and performance modeling of PEM fuel cells. Appl. Energy 2016, 165, 81–106.

[76]

Li, H.; Nakajima, H.; Inada, A.; Ito, K. Effect of flow-field pattern and flow configuration on the performance of a polymerelectrolyte-membrane water electrolyzer at high temperature. Int. J. Hydrogen Energy 2018, 43, 8600–8610.

[77]

Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.

[78]

Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem., Int. Ed. 2016, 55, 2058–2062.

[79]

Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.

[80]

Liu, J.; Jiao, M. G.; Lu, L. L.; Barkholtz, H. M.; Li, Y. P.; Wang, Y.; Jiang, L. H.; Wu, Z. J.; Liu, D. J.; Zhuang, L. et al. Erratum: High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nat. Commun. 2017, 8, 16160.

[81]

Nayak, P.; Jiang, Q.; Kurra, N.; Wang, X. B.; Buttner, U.; Alshareef, H. N. Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 20422–20427.

[82]

Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.

[83]

Yan, H.; Lin, Y.; Wu, H.; Zhang, W. H.; Sun, Z. H.; Cheng, H.; Liu, W.; Wang, C. L.; Li, J. J.; Huang, X. H. et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 2017, 8, 1070.

[84]

Chen, Z. J.; Cao, G. X.; Gan, L. Y.; Dai, H.; Xu, N.; Zang, M. J.; Dai, H. B.; Wu, H.; Wang, P. Highly dispersed platinum on honeycomb-like NiO@Ni film as a synergistic electrocatalyst for the hydrogen evolution reaction. ACS Catal. 2018, 8, 8866–8872.

[85]

Tang, K.; Wang, X. F.; Li, Q.; Yan, C. L. High edge selectivity of in situ electrochemical Pt deposition on edge-rich layered WS2 nanosheets. Adv. Mater. 2018, 30, 1704779.

[86]

Zhang, L. H.; Han, L. L.; Liu, H. X.; Liu, X. J.; Luo, J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem., Int. Ed. 2017, 56, 13694–13698.

[87]

Zhang, L.; Doyle-Davis, K.; Sun, X. L. Pt-Based electrocatalysts with high atom utilization efficiency: From nanostructures to single atoms. Energy Environ. Sci. 2019, 12, 492–517.

[88]

Sun, R. B.; Guo, W. X.; Han, X.; Hong, X. Two-dimensional noble metal nanomaterials for electrocatalysis. Chem. Res. Chin. Univ. 2020, 36, 597–610.

[89]

Zhang, H. B.; An, P. F.; Zhou, W.; Guan, B. Y.; Zhang, P.; Dong, J. C.; Lou, X. W. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 2018, 4, eaao6657.

[90]

Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.

[91]

Ye, S. H.; Luo, F. Y.; Zhang, Q. L.; Zhang, P. Y.; Xu, T. T.; Wang, Q.; He, D. S.; Guo, L. C.; Zhang, Y.; He, C. X. et al. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 2019, 12, 1000–1007.

[92]

Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

[93]

Esposito, D. V.; Hunt, S. T.; Kimmel, Y. C.; Chen, J. G. A new class of electrocatalysts for hydrogen production from water electrolysis: Metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 2012, 134, 3025–3033.

[94]

Jiang, K.; Liu, B. Y.; Luo, M.; Ning, S. C.; Peng, M.; Zhao, Y.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 2019, 10, 1743.

[95]

Zhu, J. T.; Tu, Y. D.; Cai, L. J.; Ma, H. B.; Chai, Y.; Zhang, L. F.; Zhang, W. J. Defect-assisted anchoring of Pt single atoms on MoS2 Nanosheets produces high-performance catalyst for industrial hydrogen evolution reaction. Small 2022, 18, 2104824.

[96]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.

[97]

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

[98]

Wu, D. S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Platinum-group-metal high-entropy-alloy nanoparticles. J. Am. Chem. Soc. 2020, 142, 13833–13838.

[99]

Shi, P. J.; Ren, W. L.; Zheng, T. X.; Ren, Z. M.; Hou, X. L.; Peng, J. C.; Hu, P. F.; Gao, Y. F.; Zhong, Y. B.; Liaw, P. K. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat. Commun. 2019, 10, 489.

[100]

Xie, P. F.; Yao, Y. G.; Huang, Z. N.; Liu, Z. Y.; Zhang, J. L.; Li, T. Y.; Wang, G. F.; Shahbazian-Yassar, R.; Hu, L.; Wang, C. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 2019, 10, 4011.

[101]

Ding, Q. Q.; Zhang, Y.; Chen, X.; Fu, X. Q.; Chen, D. K.; Chen, S. J.; Gu, L.; Wei, F.; Bei, H. B.; Gao, Y. F. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 2019, 574, 223–227.

[102]

Cai, Z. X.; Goou, H.; Ito, Y.; Tokunaga, T.; Miyauchi, M.; Abe, H.; Fujita, T. Nanoporous ultra-high-entropy alloys containing fourteen elements for water splitting electrocatalysis. Chem. Sci. 2021, 12, 11306–11315.

[103]

Xin, Y.; Li, S. H.; Qian, Y. Y.; Zhu, W. K.; Yuan, H. B.; Jiang, P. Y.; Guo, R. H.; Wang, L. B. High-entropy alloys as a platform for catalysis: Progress, challenges, and opportunities. ACS Catal. 2020, 10, 11280–11306.

[104]

Feng, G.; Ning, F. H.; Song, J.; Shang, H. F.; Zhang, K.; Ding, Z. P.; Gao, P.; Chu, W. S.; Xia, D. G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 17117–17127.

[105]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[106]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[107]

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

[108]

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

[109]

Feng, L. L.; Li, G. D.; Liu, Y. P.; Wu, Y. Y.; Chen, H.; Wang, Y.; Zou, Y. C.; Wang, D. J.; Zou, X. X. Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 980–988.

[110]

Chen, Y. L.; Yu, G. T.; Chen, W.; Liu, Y. P.; Li, G. D.; Zhu, P. W.; Tao, Q.; Li, Q. J.; Liu, J. W.; Shen, X. P. et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 12370–12373.

[111]

Li, Q. J.; Wang, L. N.; Ai, X.; Chen, H.; Zou, J. Y.; Li, G. D.; Zou, X. X. Multiple crystal phases of intermetallic tungsten borides and phase-dependent electrocatalytic property for hydrogen evolution. Chem. Commun. 2020, 56, 13983–13986.

[112]

Li, Q. J.; Zou, X.; Ai, X.; Chen, H.; Sun, L.; Zou, X. X. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-Like activity. Adv. Energy Mater. 2019, 9, 1803369.

[113]

King, L. A.; Hubert, M. A.; Capuano, C.; Manco, J.; Danilovic, N.; Valle, E.; Hellstern, T. R.; Ayers, K.; Jaramillo, T. F. A nonprecious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 2019, 14, 1071–1074.

[114]

Liu, Y. P.; Yu, G. T.; Li, G. D.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew. Chem., Int. Ed. 2015, 54, 10752–10757.

[115]

Zhu, Y. P.; Chen, G.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv. Sci. 2018, 5, 1700603.

[116]

Hubert, M. A.; King, L. A.; Jaramillo, T. F. Evaluating the case for reduced precious metal catalysts in proton exchange membrane electrolyzers. ACS Energy Lett. 2022, 7, 17–23.

[117]

Sharma, R.; Karlsen, M. A.; Morgen, P.; Chamier, J.; Ravnsbæk, D. B.; Andersen, S. M. Crystalline disorder, surface chemistry, and their effects on the oxygen evolution reaction (OER) activity of mass-produced nanostructured iridium oxides. ACS Appl. Energy Mater. 2021, 4, 2552–2562.

[118]

Rasten, E.; Hagen, G.; Tunold, R. Electrocatalysis in water electrolysis with solid polymer electrolyte. Electrochim. Acta 2003, 48, 3945–3952.

[119]

Tachikawa, T.; Beniya, A.; Shigetoh, K.; Higashi, S. Relationship between OER activity and annealing temperature of sputterdeposited flat IrO2 thin films. Catal. Lett. 2020, 150, 1976–1984.

[120]

González, D.; Sodupe, M.; Rodríguez-Santiago, L.; Solans-Monfort, X. Surface morphology controls water dissociation on hydrated IrO2 nanoparticles. Nanoscale 2021, 13, 14480–14489.

[121]

Wright, J. D.; Sommerdijk, N. A. Sol-Gel Materials: Chemistry and Applications; CRC Press: Boca Raton, 2018.

[122]

Fuentes, R. E.; Farell, J.; Weidner, J. W. Multimetallic electrocatalysts of Pt, Ru, and Ir supported on anatase and rutile TiO2 for oxygen evolution in an acid environment. Electrochem. Solid-State Lett. 2010, 14, E5–E7.

[123]

Ioroi, T.; Kitazawa, N.; Yasuda, K.; Yamamoto, Y.; Takenaka, H. Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells. J. Electrochem. Soc. 2000, 147, 2018.

[124]

Adams, R.; Shriner, R. L. Platinum oxide as a catalyst in the reduction of organic compounds. Ⅲ. Preparation and properties of the oxide of platinum obtained by the fusion of chloroplatinic acid with sodium nitrate. J. Am. Chem. Soc. 1923, 45, 2171–2179.

[125]

Siracusano, S.; Van Dijk, N.; Payne-Johnson, E.; Baglio, V.; Aricò, A. S. Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers. Appl. Catal. B: Environ. 2015, 164, 488–495.

[126]

Ribeiro, J.; Moats, M. S.; De Andrade, A. R. Morphological and electrochemical investigation of RuO2-Ta2O5 oxide films prepared by the Pechini-Adams method. J. Appl. Electrochem. 2008, 38, 767–775.

[127]

Chandra, D.; Takama, D.; Masaki, T.; Sato, T.; Abe, N.; Togashi, T.; Kurihara, M.; Saito, K.; Yui, T.; Yagi, M. Highly efficient electrocatalysis and mechanistic investigation of intermediate IrOx(OH)y nanoparticle films for water oxidation. ACS Catal. 2016, 6, 3946–3954.

[128]

Gago, A. S.; Lettenmeier, P.; Stiber, S.; Ansar, A. S.; Wang, L.; Friedrich, K. A. Cost-effective PEM electrolysis: The quest to achieve superior efficiencies with reduced investment. ECS Trans. 2018, 85, 3–13.

[129]

Gottesfeld, S.; Srinivasan, S. Electrochemical and optical studies of thick oxide layers on iridium and their electrocatalytic activities for the oxygen evolution reaction. J. Electroanal. Chem. Interfacial Electrochem. 1978, 86, 89–104.

[130]

Pfeifer, V.; Jones, T. E.; Velasco Vélez, J. J.; Massué, C.; Arrigo, R.; Teschner, D.; Girgsdies, F.; Scherzer, M.; Greiner, M. T.; Allan, J. et al. The electronic structure of iridium and its oxides. Surf. Interface Anal. 2016, 48, 261–273.

[131]

Beni, G.; Schiavone, L. M.; Shay, J. L.; Dautremont-Smith, W. C.; Schneider, B. S. Electrocatalytic oxygen evolution on reactively sputtered electrochromic iridium oxide films. Nature 1979, 282, 281–283.

[132]

Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D. et al. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 2014, 5, 2474–2478.

[133]

Geiger, S.; Kasian, O.; Shrestha, B. R.; Mingers, A. M.; Mayrhofer, K. J. J.; Cherevko, S. Activity and stability of electrochemically and thermally treated iridium for the oxygen evolution reaction. J. Electrochem. Soc. 2016, 163, F3132–F3138.

[134]

Marshall, A.; Børresen, B.; Hagen, G.; Tsypkin, M.; Tunold, R. Electrochemical characterisation of IrxSn1-xO2 powders as oxygen evolution electrocatalysts. Electrochim. Acta 2006, 51, 3161–3167.

[135]

Bernicke, M.; Ortel, E.; Reier, T.; Bergmann, A.; Ferreira de Araujo, J.; Strasser, P.; Kraehnert, R. Iridium oxide coatings with templated porosity as highly active oxygen evolution catalysts: Structure-activity relationships. ChemSusChem 2015, 8, 1908–1915.

[136]

Cherevko, S.; Reier, T.; Zeradjanin, A. R.; Pawolek, Z.; Strasser, P.; Mayrhofer, K. J. J. Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochem. Commun. 2014, 48, 81–85.

[137]

Reier, T.; Teschner, D.; Lunkenbein, T.; Bergmann, A.; Selve, S.; Kraehnert, R.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution on iridium oxide: Uncovering catalyst-substrate interactions and active iridium oxide species. J. Electrochem. Soc. 2014, 161, F876–F882.

[138]

Bernt, M.; Hartig-Weiß, A.; Tovini, M. F.; El-Sayed, H. A.; Schramm, C.; Schröter, J.; Gebauer, C.; Gasteiger, H. A. Current challenges in catalyst development for PEM water electrolyzers. Chem. Ing. Tech. 2020, 92, 31–39.

[139]

Taie, Z.; Peng, X.; Kulkarni, D.; Zenyuk, I. V.; Weber, A. Z.; Hagen, C.; Danilovic, N. Pathway to complete energy sector decarbonization with available iridium resources using ultralow loaded water electrolyzers. ACS Appl. Mater. Interfaces 2020, 12, 52701–52712.

[140]

Bernt, M.; Siebel, A.; Gasteiger, H. A. Analysis of voltage losses in PEM water electrolyzers with low platinum group metal loadings. J. Electrochem. Soc. 2018, 165, F305–F314.

[141]

Kötz, R.; Stucki, S. Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media. Electrochim. Acta 1986, 31, 1311–1316.

[142]

Owe, L. E.; Tsypkin, M.; Wallwork, K. S.; Haverkamp, R. G.; Sunde, S. Iridium-ruthenium single phase mixed oxides for oxygen evolution: Composition dependence of electrocatalytic activity. Electrochim. Acta 2012, 70, 158–164.

[143]

Saveleva, V. A.; Wang, L.; Luo, W.; Zafeiratos, S.; Ulhaq-Bouillet, C.; Gago, A. S.; Friedrich, K. A.; Savinova, E. R. Uncovering the stabilization mechanism in bimetallic ruthenium-iridium anodes for proton exchange membrane electrolyzers. J. Phys. Chem. Lett. 2016, 7, 3240–3245.

[144]

Spöri, C.; Falling, L. J.; Kroschel, M.; Brand, C.; Bonakdarpour, A.; Kühl, S.; Berger, D.; Gliech, M.; Jones, T. E.; Wilkinson, D. P. et al. Molecular analysis of the unusual stability of an IrNbOx catalyst for the electrochemical water oxidation to molecular oxygen (OER). ACS Appl. Mater. Interfaces 2021, 13, 3748–3761.

[145]

Elmaalouf, M.; Odziomek, M.; Duran, S.; Gayrard, M.; Bahri, M.; Tard, C.; Zitolo, A.; Lassalle-Kaiser, B.; Piquemal, J. Y.; Ersen, O. et al. The origin of the high electrochemical activity of pseudo-amorphous iridium oxides. Nat. Commun. 2021, 12, 3935.

[146]

Zhao, F.; Wen, B.; Niu, W. H.; Chen, Z.; Yan, C.; Selloni, A.; Tully, C. G.; Yang, X. F.; Koel, B. E. Increasing iridium oxide activity for the oxygen evolution reaction with hafnium modification. J. Am. Chem. Soc. 2021, 143, 15616–15623.

[147]

Jiang, G.; Yu, H. M.; Hao, J. K.; Chi, J.; Fan, Z. X.; Yao, D. W.; Qin, B. W.; Shao, Z. G. An effective oxygen electrode based on Ir0.6Sn0.4O2 for PEM water electrolyzers. J. Energy Chem. 2019, 39, 23–28.

[148]

Rabis, A.; Rodriguez, P.; Schmidt, T. J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges. ACS Catal. 2012, 2, 864–890.

[149]

Shao, Y.; Liu, J.; Wang, Y.; Lin, Y. H. Novel catalyst support materials for PEM fuel cells: Current status and future prospects. J. Mater. Chem. 2009, 19, 46–59.

[150]

Kimmel, Y. C.; Xu, X. G.; Yu, W. T.; Yang, X. D.; Chen, J. G. Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts. ACS Catal. 2014, 4, 1558–1562.

[151]

Van Pham, C.; Bühler, M.; Knöppel, J.; Bierling, M.; Seeberger, D.; Escalera-López, D.; Mayrhofer, K. J.; Cherevko, S.; Thiele, S. IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electrolyzers. Appl. Catal. B: Environ 2020, 269, 118762.

[152]

Oakton, E.; Lebedev, D.; Povia, M.; Abbott, D. F.; Fabbri, E.; Fedorov, A.; Nachtegaal, M.; Copéret, C.; Schmidt, T. J. IrO2-TiO2: A high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction. ACS Catal. 2017, 7, 2346–2352.

[153]

Lv, H.; Wang, S.; Hao, C. P.; Zhou, W.; Li, J. K.; Xue, M. Z.; Zhang, C. M. Oxygen-deficient Ti0.9Nb0.1O2-x as an efficient anodic catalyst support for PEM water electrolyzer. ChemCatChem 2019, 11, 2511–2519.

[154]

Hao, C. P.; Lv, H.; Zhao, Q.; Li, B.; Zhang, C. M.; Mi, C. G.; Song, Y. K.; Ma, J. X. Investigation of V-doped TiO2 as an anodic catalyst support for SPE water electrolysis. Int. J. Hydrogen Energy 2017, 42, 9384–9395.

[155]

Zhao, S.; Stocks, A.; Rasimick, B.; More, K.; Xu, H. Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers. J. Electrochem. Soc. 2018, 165, F82–F89.

[156]

Ohno, H.; Nohara, S.; Kakinuma, K.; Uchida, M.; Uchida, H. Effect of electronic conductivities of iridium oxide/doped SnO2 oxygen-evolving catalysts on the polarization properties in proton exchange membrane water electrolysis. Catalysts 2019, 9, 74.

[157]

Geiger, S.; Kasian, O.; Mingers, A. M.; Mayrhofer, K. J. J.; Cherevko, S. Stability limits of tin-based electrocatalyst supports. Sci. Rep. 2017, 7, 4595.

[158]

Song, H. J.; Yoon, H.; Ju, B.; Kim, D. W. Highly efficient perovskite-based electrocatalysts for water oxidation in acidic environments: A mini review. Adv. Energy Mater. 2021, 11, 2002428.

[159]

Liang, X.; Shi, L.; Cao, R.; Wan, G.; Yan, W. S.; Chen, H.; Liu, Y. P.; Zou, X. X. Perovskite-type solid solution nano-electrocatalysts enable simultaneously enhanced activity and stability for oxygen evolution. Adv. Mater. 2020, 32, 2001430.

[160]

Sun, W.; Liu, J. Y.; Gong, X. Q.; Zaman, W. Q.; Cao, L. M.; Yang, J. OER activity manipulated by IrO6 coordination geometry: An insight from pyrochlore iridates. Sci. Rep. 2016, 6, 38429.

[161]

Shang, C. Y.; Cao, C.; Yu, D. Y.; Yan, Y.; Lin, Y. T.; Li, H. L.; Zheng, T. T.; Yan, X. P.; Yu, W. C.; Zhou, S. M. et al. Oxygen evolution reaction: Electron correlations engineer catalytic activity of pyrochlore Iridates for acidic water oxidation. Adv. Mater. 2019, 31, 1970042.

[162]

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

[163]

Wan, G.; Freeland, J. W.; Kloppenburg, J.; Petretto, G.; Nelson, J. N.; Kuo, D. Y.; Sun, C. J.; Wen, J. G.; Diulus, J. T.; Herman, G. S. et al. Amorphization mechanism of SrIrO3 electrocatalyst: How oxygen redox initiates ionic diffusion and structural reorganization. Sci. Adv. 2021, 7, eabc7323.

[164]

Zhang, Q.; Chen, H.; Yang, L.; Liang, X.; Shi, L.; Feng, Q.; Zou, Y. C.; Li, G. D.; Zou, X. X. Non-catalytic, instant iridium (Ir) leaching: A non-negligible aspect in identifying Ir-based perovskite oxygen-evolving electrocatalysts. Chin. J. Catal. 2022, 43, 885–893.

[165]

Liang, X.; Shi, L.; Liu, Y. P.; Chen, H.; Si, R.; Yan, W. S.; Zhang, Q.; Li, G. D.; Yang, L.; Zou, X. X. Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew. Chem., Int. Ed. 2019, 58, 7631–7635.

[166]

Chen, H.; Shi, L.; Liang, X.; Wang, L. N.; Asefa, T.; Zou, X. X. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts. Angew. Chem., Int. Ed. 2020, 59, 19654–19658.

[167]

Liang, H. F.; Cao, Z.; Xia, C.; Ming, F. W.; Zhang, W. L.; Emwas, A. H.; Cavallo, L.; Alshareef, H. N. Tungsten blue oxide as a reusable electrocatalyst for acidic water oxidation by Plasma-induced vacancy engineering. CCS Chem. 2021, 3, 1553–1561.

[168]

Su, H.; Soldatov, M. A.; Roldugin, V.; Liu, Q. H. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2022, 2, 102–109.

[169]

Kim, B. J.; Abbott, D. F.; Cheng, X.; Fabbri, E.; Nachtegaal, M.; Bozza, F.; Castelli, I. E.; Lebedev, D.; Schäublin, R.; Copéret, C. Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide. ACS Catal. 2017, 7, 3245–3256.

[170]

Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res. 2022, 15, 1959–1965.

[171]

Li, A. L.; Ooka, H.; Bonnet, N.; Hayashi, T.; Sun, Y. M.; Jiang, Q. K.; Li, C.; Han, H. X.; Nakamura, R. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions. Angew. Chem., Int. Ed. 2019, 58, 5054–5058.

[172]

Hu, F.; Zhu, S. L.; Chen, S. M.; Li, Y.; Ma, L.; Wu, T. P.; Zhang, Y.; Wang, C. M.; Liu, C. C.; Yang, X. J. et al. Amorphous metallic NiFeP: A conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 2017, 29, 1606570.

[173]

Xiong, Q. Z.; Zhang, X.; Wang, H. J.; Liu, G. Q.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem. Commun. 2018, 54, 3859–3862.

[174]

Rakousky, C.; Reimer, U.; Wippermann, K.; Carmo, M.; Lueke, W.; Stolten, D. An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis. J. Power Sources 2016, 326, 120–128.

[175]

Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S. Future cost and performance of water electrolysis: An expert elicitation study. Int. J. Hydrogen Energy 2017, 42, 30470–30492.

[176]

Yousfi-Steiner, N.; Moçotéguy, P.; Candusso, D.; Hissel, D. A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation. J. Power Sources 2009, 194, 130–145.

[177]

de Bruijn, F. A.; Dam, V. A. T.; Janssen, G. J. M. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cells 2008, 8, 3–22.

[178]

Zhang, T.; Wang, P. Q.; Chen, H. C.; Pei, P. C. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Appl. Energy 2018, 223, 249–262.

[179]

Siracusano, S.; Baglio, V.; Van Dijk, N.; Merlo, L.; Aricò, A. S. Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer. Appl. Energy 2017, 192, 477–489.

[180]

Spöri, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem., Int. Ed. 2017, 56, 5994–6021.

[181]

Claudel, F.; Dubau, L.; Berthomé, G.; Sola-Hernandez, L.; Beauger, C.; Piccolo, L.; Maillard, F. Degradation mechanisms of oxygen evolution reaction electrocatalysts: A combined identical-location transmission electron microscopy and X-ray photoelectron spectroscopy study. ACS Catal. 2019, 9, 4688–4698.

[182]

Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J. P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170–180.

[183]

Song, S. D.; Zhang, H. M.; Ma, X. P.; Shao, Z. G.; Baker, R. T.; Yi, B. L. Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers. Int. J. Hydrogen Energy 2008, 33, 4955–4961.

[184]

da Silva, C. D. F.; Claudel, F.; Martin, V.; Chattot, R.; Abbou, S.; Kumar, K.; Jiménez-Morales, I.; Cavaliere, S.; Jones, D.; Rozière, J. et al. Oxygen evolution reaction activity and stability benchmarks for supported and unsupported IrOx electrocatalysts. ACS Catal. 2021, 11, 4107–4116.

[185]

Schuler, T.; Kimura, T.; Schmidt, T. J.; Büchi, F. N. Towards a generic understanding of oxygen evolution reaction kinetics in polymer electrolyte water electrolysis. Energy Environ. Sci. 2020, 13, 2153–2166.

[186]

Li, B. S.; Lin, A.; Gan, F. X. Preparation and electrocatalytic properties of Ti/IrO2-Ta2O5 anodes for oxygen evolution. Trans. Nonferrous Metal. Soc. 2006, 16, 1193–1199.

[187]

Terezo, A. J.; Bisquert, J.; Pereira, E. C.; Garcia-Belmonte, G. Separation of transport, charge storage and reaction processes of porous electrocatalytic IrO2 and IrO2/Nb2O5 electrodes. J. Electroanal. Chem. 2001, 508, 59–69.

[188]

Wei, G. Q.; Wang, Y. X.; Huang, C. D.; Gao, Q. J.; Wang, Z. T.; Xu, L. The stability of MEA in SPE water electrolysis for hydrogen production. Int. J. Hydrogen Energy 2010, 35, 3951–3957.

[189]

Koenigsmann, C.; Wong, S. S. One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 1161–1176.

[190]

Sun, S. C.; Shao, Z. G.; Yu, H. M.; Li, G. F.; Yi, B. L. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack. J. Power Sources 2014, 267, 515–520.

[191]

Millet, P.; Ranjbari, A.; de Guglielmo, F.; Grigoriev, S. A.; Auprêtre, F. Cell failure mechanisms in PEM water electrolyzers. Int. J. Hydrogen Energy 2012, 37, 17478–17487.

[192]

Wang, X. Y.; Shao, Z. G.; Li, G. F.; Zhang, L. S.; Zhao, Y.; Lu, W. T.; Yi, B. L. Preparation and characterization of partial-cocrystallized catalyst-coated membrane for solid polymer electrolyte water electrolysis. Int. J. Hydrogen Energy 2013, 38, 9057–9064.

[193]

Chandesris, M.; Médeau, V.; Guillet, N.; Chelghoum, S.; Thoby, D.; Fouda-Onana, F. Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density. Int. J. Hydrogen Energy 2015, 40, 1353–1366.

[194]

Kobayashi, Y.; Kosaka, K.; Yamamoto, T.; Tachikawa, Y.; Ito, K.; Sasaki, K. A solid polymer water electrolysis system utilizing natural circulation. Int. J. Hydrogen Energy 2014, 39, 16263–16274.

[195]

Khatib, F. N.; Wilberforce, T.; Ijaodola, O.; Ogungbemi, E.; El-Hassan, Z.; Durrant, A.; Thompson, J.; Olabi, A. G. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review. Renew. Sust. Energy Rev. 2019, 111, 1–14.

[196]

Marocco, P.; Sundseth, K.; Aarhaug, T.; Lanzini, A.; Santarelli, M.; Barnett, A. O.; Thomassen, M. Online measurements of fluoride ions in proton exchange membrane water electrolysis through ion chromatography. J. Power Sources 2021, 483, 229179.

[197]

Langemann, M.; Fritz, D. L.; Müller, M.; Stolten, D. Validation and characterization of suitable materials for bipolar plates in PEM water electrolysis. Int. J. Hydrogen Energy 2015, 40, 11385–11391.

[198]

Briant, C. L.; Wang, Z. F.; Chollocoop, N. Hydrogen embrittlement of commercial purity titanium. Corros. Sci. 2002, 44, 1875–1888.

[199]

Kang, Z. Y.; Alia, S. M.; Carmo, M.; Bender, G. In-situ and in-operando analysis of voltage losses using sense wires for proton exchange membrane water electrolyzers. J. Power Sources 2021, 481, 229012.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 10 August 2022
Revised: 03 September 2022
Accepted: 04 September 2022
Published: 12 October 2022
Issue date: December 2022

Copyright

© The Author(s) 2022. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

X. Z. thanks for the financial support from the National Key R & D Program of China (No. 2021YFB4000200), the National Natural Science Foundation of China (NSFC) (Nos. 21922507 and 22179046). H. Chen acknowledges the financial support from China Postdoctoral Science Foundation (No. 2022T150253), Jilin Province Science and Technology Development Plan (No. 20210101403JC), and Science and Technology Research Program of Education Department of Jilin Province (No. JJKH20220998KJ). X. L. acknowledges the financial support from China Postdoctoral Science Foundation (No. 2021M701377). We also thank the NSFC (No. 21621001) and the 111 Project (No. B17020) for additional financial support.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return