Journal Home > Volume 2 , Issue 2

Electrolytes hold the key to realizing reliable zinc (Zn) anodes. Divergent organic molecules have been proven effective in stabilizing Zn anodes; however, irrational comparisons exist due to the uncontrolled molecular weights and functional group amounts. In this work, two “isomeric molecules”: 1,2-dimethoxyethane (DME) and 1-methoxy-2-propanol (PM), with identical molecular weights but different functional groups, have been studied as co-solvents in electrolytes, which have delivered distinct electrochemical performance. Experimental and simulative study indicates the dipole moment induced by the hydroxyl groups in PM (higher molecular polarity than ether groups in DME) reconstructs the space charge region, enhances the concentration of Zn2+ in the vicinity of Zn anodes, and in-situ derives different solid electrolyte interphase (SEI) models and electrode–electrolyte interfaces, resulting in exceptional cycling stability. Remarkably, the Zn||Cu cell with PM worked over 2000 cycles with high Coulombic efficiency (CE) of 99.7%. The Zn||Zn symmetric cell cycled over 2000 h at 1 mA·cm−2, and showed excellent stability at an ultrahigh current density of 10 mA·cm−2 and capacity of 20 mAh·cm−2 over 200 h (depth of discharge, DOD of 70%). The Zn||sodium vanadate pouch cell with a high mass loading of 6.3 mg·cm−2 and a high capacity of 24 mAh demonstrates superior cyclability after 570 h. This work can be a good starting point to provide reliable guidance on electrolyte design for practical aqueous Zn batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Functional group differentiation of isomeric solvents enables distinct zinc anode chemistry

Show Author's information Chao Liu1,2,§Qing Li3,§Yilun Lin1,2Zhiquan Wei2,3Yihan Yang2Cuiping Han5Minshen Zhu6Haiyan Zhang1( )Hongfei Li2,4( )
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China
Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), TU Chemnitz, Chemnitz 09126, Germany

Abstract

Electrolytes hold the key to realizing reliable zinc (Zn) anodes. Divergent organic molecules have been proven effective in stabilizing Zn anodes; however, irrational comparisons exist due to the uncontrolled molecular weights and functional group amounts. In this work, two “isomeric molecules”: 1,2-dimethoxyethane (DME) and 1-methoxy-2-propanol (PM), with identical molecular weights but different functional groups, have been studied as co-solvents in electrolytes, which have delivered distinct electrochemical performance. Experimental and simulative study indicates the dipole moment induced by the hydroxyl groups in PM (higher molecular polarity than ether groups in DME) reconstructs the space charge region, enhances the concentration of Zn2+ in the vicinity of Zn anodes, and in-situ derives different solid electrolyte interphase (SEI) models and electrode–electrolyte interfaces, resulting in exceptional cycling stability. Remarkably, the Zn||Cu cell with PM worked over 2000 cycles with high Coulombic efficiency (CE) of 99.7%. The Zn||Zn symmetric cell cycled over 2000 h at 1 mA·cm−2, and showed excellent stability at an ultrahigh current density of 10 mA·cm−2 and capacity of 20 mAh·cm−2 over 200 h (depth of discharge, DOD of 70%). The Zn||sodium vanadate pouch cell with a high mass loading of 6.3 mg·cm−2 and a high capacity of 24 mAh demonstrates superior cyclability after 570 h. This work can be a good starting point to provide reliable guidance on electrolyte design for practical aqueous Zn batteries.

Keywords: functional group, isomeric solvents, zinc anode, solid electrolyte interphase (SEI) model

References(51)

[1]

Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

[2]

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

[3]

Li, Q.; Chen, A.; Wang, D. H.; Zhao, Y. W.; Wang, X. Q.; Jin, X.; Xiong, B.; Zhi, C. Y. Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nat. Commun. 2022, 13, 3699.

[4]

Zhang, W. D.; Zhao, Q.; Hou, Y. P.; Shen, Z. Y.; Fan, L.; Zhou, S. D.; Lu, Y. Y.; Archer, L. A. Dynamic interphase-mediated assembly for deep cycling metal batteries. Sci. Adv. 2021, 7, eabl3752.

[5]

Yang, S.; Lv, H. M.; Wang, Y. B.; Guo, X.; Zhao, L. Z.; Li, H. F.; Zhi, C. Y. Regulating exposed facets of metal-organic frameworks for high-rate alkaline aqueous zinc batteries. Angew. Chem., Int. Ed. 2022, 61, e202209794.

[6]

Sambandam, B.; Mathew, V.; Kim, S.; Lee, S.; Kim, S.; Hwang, J. Y.; Fan, H. J.; Kim, J. An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. Chem 2022, 8, 924–946.

[7]

Ji, X. L. A paradigm of storage batteries. Energy Environ. Sci. 2019, 12, 3203–3224.

[8]

Zhao, X. L.; Yan, J. W.; Hong, H.; Zhao, Y. W.; Li, Q.; Tang, Y. C.; He, J. F.; Wei, Z. Q.; He, S. G.; Hou, X. H. et al. Ligand-substitution chemistry enabling wide-voltage aqueous hybrid electrolyte for ultrafast-charging batteries. Adv. Energy Mater. 2022, 12, 2202478.

[9]

Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

[10]

Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

[11]

Li, Q. ; Chen, A. ; Wang, D. H. ; Pei, Z. X. ; Zhi, C. Y. “Soft shorts” hidden in zinc metal anode research. Joule 2022, 6, 273–279.

[12]

Yang, F. H.; Yuwono, J. A.; Hao, J. N.; Long, J.; Yuan, L. B.; Wang, Y. Y.; Liu, S. L.; Fan, Y. M.; Zhao, S. Y.; Davey, K. et al. Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv. Mater. 2022, 34, 2206754.

[13]

Wu, X. Y.; Xu, Y. K.; Zhang, C.; Leonard, D. P.; Markir, A.; Lu, J.; Ji, X. L. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J. Am. Chem. Soc. 2019, 141, 6338–6344.

[14]

Yang, H. J.; Chang, Z.; Qiao, Y.; Deng, H.; Mu, X. W.; He, P.; Zhou, H. S. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem., Int. Ed. 2020, 59, 9377–9381.

[15]

Zhang, T. S.; Tang, Y.; Guo, S.; Cao, X. X.; Pan, A. Q.; Fang, G. Z.; Zhou, J.; Liang, S. Q. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review. Energy Environ. Sci. 2020, 13, 4625–4665.

[16]

Li, Y. B.; Fu, J.; Zhong, C.; Wu, T. P.; Chen, Z. W.; Hu, W. B.; Amine, K.; Lu, J. Recent advances in flexible zinc-based rechargeable batteries. Adv. Energy Mater. 2019, 9, 1802605.

[17]

Han, D. L.; Cui, C. J.; Zhang, K. Y.; Wang, Z. X.; Gao, J. C.; Guo, Y.; Zhang, Z. C.; Wu, S. C.; Yin, L. C.; Weng, Z. et al. A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 2022, 5, 205–213.

[18]

Qiu, H. Y.; Du, X. F.; Zhao, J. W.; Wang, Y. T.; Ju, J. W.; Chen, Z.; Hu, Z. L.; Yan, D. P.; Zhou, X. H.; Cui, G. L. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 2019, 10, 5374.

[19]

Li, M.; Li, Z. L.; Wang, X. P.; Meng, J. S.; Liu, X.; Wu, B. K.; Han, C. H.; Mai, L. Q. Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: From electrolytes to electrode materials. Energy Environ. Sci. 2021, 14, 3796–3839.

[20]

Suo, L. M.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X. L.; Luo, C.; Wang, C. S.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938–943.

[21]

Jin, Y.; Han, K. S.; Shao, Y. Y.; Sushko, M. L.; Xiao, J.; Pan, H. L.; Liu, J. Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 2020, 30, 2003932.

[22]

Ma, Y. L.; Zhang, Q.; Liu, L. J.; Li, Y. X.; Li, H. X.; Yan, Z. H.; Chen, J. N,N-dimethylformamide tailors solvent effect to boost Zn anode reversibility in aqueous electrolyte. Natl. Sci. Rev. 2022, 9, nwac051.

[23]

Nian, Q. S.; Zhang, X. R.; Feng, Y. Z.; Liu, S.; Sun, T. J.; Zheng, S. B.; Ren, X. D.; Tao, Z. L.; Zhang, D. H.; Chen, J. Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries. ACS Energy Lett. 2021, 6, 2174–2180.

[24]

Yan, M. D.; Dong, N.; Zhao, X. S.; Sun, Y.; Pan, H. L. Tailoring the stability and kinetics of Zn anodes through trace organic polymer additives in dilute aqueous electrolyte. ACS Energy Lett. 2021, 6, 3236–3243.

[25]

Lee, S.; Kim, J.; Park, J. K.; Kim, K. S. Ab initio study of the structures, energetics, and spectra of aquazinc(II). J. Phys. Chem. 1996, 100, 14329–14338.

[26]

Rudolph, W. W.; Pye, C. C. Zinc(II) hydration in aqueous solution. A Raman spectroscopic investigation and an ab-initio molecular orbital study. Phys. Chem. Chem. Phys. 1999, 1, 4583–4593.

[27]

Zhang, L.; Rodríguez-Pérez, I. A.; Jiang, H.; Zhang, C.; Leonard, D. P.; Guo, Q. B.; Wang, W. F.; Han, S. M.; Wang, L. M.; Ji, X. L. ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 2019, 29, 1902653.

[28]

Cao, L. S.; Li, D.; Hu, E. Y.; Xu, J. J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X. Q.; Wang, C. S. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 2020, 142, 21404–21409.

[29]

Gutmann, V. Solvent effects on the reactivities of organometallic compounds. Coord. Chem. Rev. 1976, 18, 225–255.

[30]

Johnson, L.; Li, C. M.; Liu, Z.; Chen, Y. H.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 2014, 6, 1091–1099.

[31]

Zhang, W. L.; Lu, Y.; Wan, L.; Zhou, P.; Xia, Y. C.; Yan, S. S.; Chen, X. X.; Zhou, H. Y.; Dong, H.; Liu, K. Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 2022, 13, 2029.

[32]

Chu, Y. Z. ; Zhang, S. ; Wu, S. ; Hu, Z. L. ; Cui, G. L. ; Luo, J. Y. In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 2021, 14, 3609–3620.

[33]

Winiarski, J.; Tylus, W.; Winiarska, K.; Szczygieł, I.; Szczygieł, B. XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions. J. Spectrosc. 2018, 2018, 2079278.

[34]

Li, D.; Cao, L. S.; Deng, T.; Liu, S. F.; Wang, C. S. Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem., Int. Ed. 2021, 60, 13035–13041.

[35]

Li, Y. Z.; Huang, W.; Li, Y. B.; Pei, A.; Boyle, D. T.; Cui, Y. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule 2018, 2, 2167–2177.

[36]

Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142.

[37]

Yildirim, H.; Haskins, J. B.; Bauschlicher, C. W. Jr; Lawson, J. W. Decomposition of ionic liquids at lithium interfaces. 1. Ab initio molecular dynamics simulations. J. Phys. Chem. C 2017, 121, 28214–28234.

[38]

Cao, L. S.; Li, D.; Pollard, T.; Deng, T.; Zhang, B.; Yang, C. Y.; Chen, L.; Vatamanu, J.; Hu, E. Y.; Hourwitz, M. J. et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 2021, 16, 902–910.

[39]

Liu, Y. J.; Tao, X. Y.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O. W.; Lu, G. X.; Lou, X. W. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 2022, 375, 739–745.

[40]
Chattaraj, P. K. Chemical Reactivity Theory: A Density Functional View; CRC Press: Boca Raton, 2009.
DOI
[41]

Lewis, R. A.; Drazen, J. M.; Austen, K. F.; Toda, M.; Brion, F.; Marfat, A.; Corey, E. J. Contractile activities of structural analogs of leukotrienes C and D: Role of the polar substituents. Proc. Natl. Acad. Sci. USA 1981, 78, 4579–4583.

[42]

Hou, Z.; Tan, H.; Gao, Y.; Li, M. H.; Lu, Z. H.; Zhang, B. Tailoring desolvation kinetics enables stable zinc metal anodes. J. Mater. Chem. A 2020, 8, 19367–19374.

[43]

Hou, Z.; Gao, Y.; Zhou, R.; Zhang, B. Unraveling the rate-dependent stability of metal anodes and its implication in designing cycling protocol. Adv. Funct. Mater. 2022, 32, 2107584.

[44]

Wang, C. H.; Dhir, V. K. Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J. Heat Transfer. 1993, 115, 659–669.

[45]

Ballesteros, J. C.; Díaz-Arista, P.; Meas, Y.; Ortega, R.; Trejo, G. Zinc electrodeposition in the presence of polyethylene glycol 20000. Electrochim. Acta 2007, 52, 3686–3696.

[46]

Sun, P.; Ma, L.; Zhou, W. H.; Qiu, M. J.; Wang, Z. L.; Chao, D. L.; Mai, W. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem., Int. Ed. 2021, 133, 18395–18403.

[47]

Xie, X. S.; Liang, S. Q.; Gao, J. W.; Guo, S.; Guo, J. B.; Wang, C.; Xu, G. Y.; Wu, X. W.; Chen, G.; Zhou, J. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 2020, 13, 503–510.

[48]

Hao, J. N.; Yuan, L. B.; Ye, C.; Chao, D. L.; Davey, K.; Guo, Z. P.; Qiao, S. Z. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem., Int. Ed. 2021, 60, 7366–7375.

[49]

Peng, H. L.; Liu, C. H.; Wang, N. N.; Wang, C. G.; Wang, D. D.; Li, Y. L.; Chen, B.; Yang, J.; Qian, Y. T. Intercalation of organics into layered structures enables superior interface compatibility and fast charge diffusion for dendrite-free Zn anodes. Energy Environ. Sci. 2022, 15, 1682–1693.

[50]

Yan, C.; Li, H. R.; Chen, X.; Zhang, X. Q.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Zhang, Q. Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 2019, 141, 9422–9429.

[51]

Cui, J.; Liu, X. Y.; Xie, Y. H.; Wu, K.; Wang, Y. Q.; Liu, Y. Y.; Zhang, J. J.; Yi, J.; Xia, Y. Y. Improved electrochemical reversibility of Zn plating/stripping: A promising approach to suppress water-induced issues through the formation of H-bonding. Mater. Today Energy 2020, 18, 100563.

File
0064_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 07 February 2023
Revised: 05 March 2023
Accepted: 08 March 2023
Published: 10 April 2023
Issue date: June 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

We acknowledge the financial support from the Open Research Fund of Songshan Lake Materials Laboratory (No. 2021SLABFN04), the National Natural Science Foundation of China (Nos. 22005207 and U20A20249), the Regional Innovation and Development Joint Fund, and the Science and Technology Program of Guangdong Province of China (No. 2022A0505030028).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return