In recent years, with rising concerns over food quality and safety, computer vision technology has gradually attracted attention and begun to be widely used in the field of food quality evaluation. Machine learning technologies such as artificial neural networks (ANN), convolutional neural networks (CNN), and support vector machines (SVM) allow automatic assessment and monitoring of food quality by training on large amounts of food images and related data. Particularly, with the development of deep learning, the computer is now able to more accurately recognize food features such as appearance, shape, and color, thereby allowing food classification, prediction and quality monitoring. In addition to its conventional application in food quality assessment, learning technologies also find application in more complex tasks such as defect detection, foreign object detection, and freshness assessment. These technologies not only improve the efficiency of food production and processing but also reduce errors caused by human factors, thereby ensuring food quality and safety. However, despite the significant progress in the application of learning technologies in food quality assessment, there are still challenges that need to be overcome. For instance, the high cost of acquiring and annotating food image datasets, as well as insufficient data quality and quantity, may affect the performance and generalization ability of models. Furthermore, the interpretability and transparency of models are important issues, especially when explaining or making decisions on food quality assessment results. Therefore, further research is needed to explore how to improve the quality and scale of datasets, optimize the robustness and interpretability of models, and develop more efficient and sustainable food quality assessment systems.
BROSNAN T, SUN D W. Improving quality inspection of food products by computer vision: a review[J]. Journal of Food Engineering, 2004, 61(1): 3-16. DOI:10.1016/s0260-8774(03)00183-3.
DAMEZ J L, CLERJON S. Quantifying and predicting meat and meat products quality attributes using electromagnetic waves: an overview[J]. Meat Science, 2013, 95(4): 879-896. DOI:10.1016/j.meatsci.2013.04.037.
GOYACHE F, BAHAMONDE A, ALONSO J, et al. The usefulness of artificial intelligence techniques to assess subjective quality of products in the food industry[J]. Trends in Food Science & Technology, 2001, 12(10): 370-381. DOI:10.1016/s0924-2244(02)00010-9.
TEIXEIRA A C, RIBEIRO J, MORAIS R, et al. A systematic review on automatic insect detection using deep learning[J]. Agriculture, 2023, 13(3): 713. DOI:10.3390/agriculture13030713.
RADY A, EKRAMIRAD N, ADEDEJI A A, et al. Hyperspectral imaging for detection of codling moth infestation in GoldRush apples[J]. Postharvest Biology and Technology, 2017, 129: 37-44. DOI:10.1016/j.postharvbio.2017.03.007.
WANG Q Y, WU D H, SUN Z Z, et al. Design, integration, and evaluation of a robotic peach packaging system based on deep learning[J]. Computers and Electronics in Agriculture, 2023, 211: 108013. DOI:10.1016/j.compag.2023.108013.
RAJ R, COSGUN A, KULIĆ D N. Strawberry water content estimation and ripeness classification using hyperspectral sensing[J]. Agronomy, 2022, 12(2): 425. DOI:10.3390/agronomy12020425.
SRICHAROONRATANA M, THOMPSON A K, TEERACHAICHAYUT S. Use of near infrared hyperspectral imaging as a nondestructive method of determining and classifying shelf life of cakes[J]. LWT-Food Science and Technology, 2021, 136: 110369. DOI:10.1016/j.lwt.2020.110369.
LIAKOS K G, BUSATO P, MOSHOU D, et al. Machine learning in agriculture: a review[J]. Sensors, 2018, 18(8): 2674. DOI:10.3390/s18082674.
MENICHETTI G, RAVANDI B, MOZAFFARIAN D, et al. Machine learning prediction of the degree of food processing[J]. Nature Communications, 2023, 14(1): 2312. DOI:10.1038/s41467-023-37457-1.
NAYAK J, VAKULA K, DINESH P, et al. Intelligent food processing: journey from artificial neural network to deep learning[J]. Computer Science Review, 2020, 38: 100297. DOI:10.1016/j.cosrev.2020.100297.
ABBASPOUR-GILANDEH Y, SABZI S, BENMOUNA B, et al. Estimation of the constituent properties of red delicious apples using a hybrid of artificial neural networks and artificial bee colony algorithm[J]. Agronomy, 2020, 10(2): 267. DOI:10.3390/agronomy10020267.
MAZEN F M A, NASHAT A A. Ripeness classification of bananas using an artificial neural network[J]. Arabian Journal for Science and Engineering, 2019, 44(8): 6901-6910. DOI:10.1007/s13369-018-03695-5.
KOK Z H, MOHAMED SHARIFF A R, ALFATNI M S M, et al. Support vector machine in precision agriculture: a review[J]. Computers and Electronics in Agriculture, 2021, 191: 106546. DOI:10.1016/j.compag.2021.106546.
MANNARO K, BAIRE M, FANTI A, et al. A robust SVM color-based food segmentation algorithm for the production process of a traditional Carasau bread[J]. IEEE Access, 2022, 10: 15359-15377. DOI:10.1109/ACCESS.2022.3147206.
CRICHTON S O J, KIRCHNER S M, PORLEY V, et al. High pH thresholding of beef with VNIR hyperspectral imaging[J]. Meat Science, 2017, 134: 14-17. DOI:10.1016/J.MEATSCI.2017.07.012.
NGUYEN M T, KIM K. Genetic convolutional neural network for intrusion detection systems[J]. Future Generation Computer Systems, 2020, 113: 418-427. DOI:10.1016/j.future.2020.07.042.
NAJAFABADI M M, VILLANUSTRE F, KHOSHGOFTAAR T M, et al. Deep learning applications and challenges in big data analytics[J]. Journal of Big Data, 2015, 2(1): 1. DOI:10.1186/s40537-014-0007-7.
KWON D, KIM H, KIM J, et al. A survey of deep learning-based network anomaly detection[J]. Cluster Computing, 2019, 22: 949-961. DOI:10.1007/s10586-017-1117-8.
NALLAN CHAKRAVARTULA S S, MOSCETTI R, BEDINI G, et al. Use of convolutional neural network (CNN) combined with FT-NIR spectroscopy to predict food adulteration: a case study on coffee[J]. Food Control, 2022, 135: 108816. DOI:10.1016/j.foodcont.2022.108816.
HUANG Y P, WANG T H, BASANTA H. Using fuzzy mask R-CNN model to automatically identify tomato ripeness[J]. IEEE Access, 2020, 8: 207672-207682. DOI:10.1109/ACCESS.2020.3038184.
SUN L, LIANG K B, SONG Y X, et al. An improved CNNbased apple appearance quality classification method with small samples[J]. IEEE Access, 2021, 9: 68054-68065. DOI:10.1109/ACCESS.2021.3077567.
LIU Y, ZHANG Y Y, LONG F W, et al. CNN-assisted accurate smartphone testing of μPAD for pork sausage freshness[J]. Journal of Food Engineering, 2024, 363: 111772. DOI:10.1016/j.jfoodeng.2023.111772.
ARORA M, MANGIPUDI P, DUTTA M K. Deep learning neural networks for acrylamide identification in potato chips using transfer learning approach[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(12): 10601-10614. DOI:10.1007/s12652-020-02867-2.
HINDARTO D. Model performance evaluation: VGG19 and Dense201 for fresh meat detection[J]. Sinkron, 2024, 9(1): 514-524. DOI:10.33395/sinkron.v9i1.13247.
YANG H Y, NI J G, GAO J Y, et al. A novel method for peanut variety identification and classification by improved VGG16[J]. Scientific Reports, 2021, 11(1): 15756. DOI:10.1038/s41598-021-95240-y.
CHITHRA P, HENILA M. Apple fruit sorting using novel thresholding and area calculation algorithms[J]. Soft Computing, 2021, 25(1): 431-445. DOI:10.1007/s00500-020-05158-2.
ROPELEWSKA E. The use of seed texture features for discriminating different cultivars of stored apples[J]. Journal of Stored Products Research, 2020, 88: 101668. DOI:10.1016/j.jspr.2020.101668.
CHAWGIEN K, KIATTISIN S. Machine learning techniques for classifying the sweetness of watermelon using acoustic signal and image processing[J]. Computers and Electronics in Agriculture, 2021, 181: 105938. DOI:10.1016/j.compag.2020.105938.
LIANG X T, JIA X Y, HUANG W Q, et al. Real-time grading of defect apples using semantic segmentation combination with a pruned YOLO V4 network[J]. Foods, 2022, 11(19): 3150. DOI:10.3390/foods11193150.
CUONG N H H, TRINH T H, MEESAD P, et al. Improved YOLO object detection algorithm to detect ripe pineapple phase[J]. Journal of Intelligent & Fuzzy Systems, 2022, 43(1): 1365-1381. DOI:10.3233/jifs-213251.
CHEN W B, LIU M C, ZHAO C J, et al. MTD-YOLO: multi-task deep convolutional neural network for cherry tomato fruit bunch maturity detection[J]. Computers and Electronics in Agriculture, 2024, 216: 108533. DOI:10.1016/j.compag.2023.108533.
AZIZAN N I, MOKHTAR N F K, ARSHAD S, et al. Detection of lard adulteration in wheat biscuits using chemometrics-assisted GCMS and random forest[J]. Food Analytical Methods, 2021, 14(11): 2276-2287. DOI:10.1007/s12161-021-02046-9.
IVORRA E, SÁNCHEZ A J, VERDÚ S, et al. Shelf life prediction of expired vacuum-packed chilled smoked salmon based on a KNN tissue segmentation method using hyperspectral images[J]. Journal of Food Engineering, 2016, 178: 110-116. DOI:10.1016/j.jfoodeng.2016.01.008.
PETROPOULOS S, KARAVAS C S, BALAFOUTIS A T, et al. Fuzzy logic tool for wine quality classification[J]. Computers and Electronics in Agriculture, 2017, 142: 552-562. DOI:10.1016/j.compag.2017.11.015.
WILEY V, LUCAS T. Computer vision and image processing: a paper review[J]. International Journal of Artificial Intelligence Research, 2018, 2(1): 28-36. DOI:10.29099/IJAIR.V2I1.42.
WEI Y, WEN Y Q, HUANG X L, et al. The dawn of intelligent technologies in tea industry[J]. Trends in Food Science & Technology, 2024, 144: 104337. DOI:10.1016/j.tifs.2024.104337.
THIEM D G E, RÖMER P, GIELISCH M, et al. Hyperspectral imaging and artificial intelligence to detect oral malignancy-part 1-automated tissue classification of oral muscle, fat and mucosa using a light-weight 6-layer deep neural network[J]. Head & Face Medicine, 2021, 17(1): 38. DOI:10.1186/s13005-021-00292-0.
LI Z B, GUO R H, LI M, et al. A review of computer vision technologies for plant phenotyping[J]. Computers and Electronics in Agriculture, 2020, 176: 105672. DOI:10.1016/j.compag.2020.105672.
LUO T Y, LI S J, LI J, et al. Image fuzzy edge information segmentation based on computer vision and machine learning[J]. Journal of Grid Computing, 2023, 21(4): 56. DOI:10.1007/s10723-023-09697-4.
LI X H, LV X F. Research on image recognition method of convolutional neural network with improved computer technology[J]. Journal of Physics: Conference Series, 2021, 1744(4): 042023. DOI:10.1088/1742-6596/1744/4/042023.
LI T F, FANG W T, ZHAO G N, et al. An improved binocular localization method for apple based on fruit detection using deep learning[J]. Information Processing in Agriculture, 2023, 10(2): 276-287. DOI:10.1016/j.inpa.2021.12.003.
LAUDARI S, MARKS B, ROGNON P. Classifying grains using behaviour-informed machine learning[J]. Scientific Reports, 2022, 12(1): 13915. DOI:10.1038/s41598-022-18250-4.
NATARAJAN S, PONNUSAMY V. Classification of organic and conventional vegetables using machine learning: a case study of brinjal, chili and tomato[J]. Foods, 2023, 12(6): 1168. DOI:10.3390/foods12061168.
SUN Y, GU X Z, SUN K, et al. Hyperspectral reflectance imaging combined with chemometrics and successive projections algorithm for chilling injury classification in peaches[J]. LWT-Food Science and Technology, 2017, 75: 557-564. DOI:10.1016/j.lwt.2016.10.006.
KOZŁOWSKI M, GÓRECKI P, SZCZYPIŃSKI P M. Varietal classification of barley by convolutional neural networks[J]. Biosystems Engineering, 2019, 184: 155-165. DOI:10.1016/j.biosystemseng.2019.06.012.
RYBACKI P, NIEMANN J, BAHCEVANDZIEV K, et al. Convolutional neural network model for variety classification and seed quality assessment of winter rapeseed[J]. Sensors, 2023, 23(5): 2486. DOI:10.3390/s23052486.
KNOTT M, PEREZ-CRUZ F, DEFRAEYE T. Facilitated machine learning for image-based fruit quality assessment[J]. Journal of Food Engineering, 2023, 345: 111401. DOI:10.1016/j.jfoodeng.2022.111401.
MERONI M, WALDNER F, SEGUINI L, et al. Yield forecasting with machine learning and small data: what gains for grains?[J]. Agricultural and Forest Meteorology, 2021, 308: 108555. DOI:10.1016/j.agrformet.2021.108555.
PACE B, CEFOLA M, DA PELO P, et al. Non-destructive evaluation of quality and ammonia content in whole and fresh-cut lettuce by computer vision system[J]. Food Research International, 2014, 64: 647-655. DOI:10.1016/j.foodres.2014.07.037.
QIAN C Y, DU T H, SUN S G, et al. An integrated learning algorithm for early prediction of melon harvest[J]. Scientific Reports, 2022, 12(1): 18199. DOI:10.1038/s41598-022-20799-z.
CATALTAS O, TUTUNCU K. Detection of protein, starch, oil, and moisture content of corn kernels using one-dimensional convolutional autoencoder and near-infrared spectroscopy[J]. PeerJ Computer Science, 2023, 9: e1266. DOI:10.7717/peerj-cs.1266.
OWEN S, CURETON S, SZUHAN M, et al. Microplastic adulteration in homogenized fish and seafood: a mid-infrared and machine learning proof of concept[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 260: 119985. DOI:10.1016/j.saa.2021.119985.
HU J, ZHOU C Q, ZHAO D D, et al. A rapid, low-cost deep learning system to classify squid species and evaluate freshness based on digital images[J]. Fisheries Research, 2020, 221: 105376. DOI:10.1016/j.fishres.2019.105376.
WIJAYA D R, SYARWAN N F, NUGRAHA M A, et al. Seafood quality detection using electronic nose and machine learning algorithms with hyperparameter optimization[J]. IEEE Access, 2023, 11: 62484-62495. DOI:10.1109/ACCESS.2023.3286980.
TIAN Y, CHEN Q, LIN Y Q, et al. Quantitative determination of phosphorus in seafood using laser-induced breakdown spectroscopy combined with machine learning[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2021, 175: 106027. DOI:10.1016/j.sab.2020.106027.
FOWLER S M, WHEELER D, MORRIS S, et al. Partial least squares and machine learning for the prediction of intramuscular fat content of lamb loin[J]. Meat Science, 2021, 177: 108505. DOI:10.1016/j.meatsci.2021.108505.
ZHENG M C, ZHANG Y X, GU J F, et al. Classification and quantification of minced mutton adulteration with pork using thermal imaging and convolutional neural network[J]. Food Control, 2021, 126: 108044. DOI:10.1016/j.foodcont.2021.108044.
WANG Y Y, WU J, CHEN F, et al. Analyzing teaching effects of blended learning with LMS: an empirical investigation[J]. IEEE Access, 2024, 12: 42343-42356. DOI:10.1109/ACCESS.2024.3352169.
LUO X Z, SUN Q M, YANG T X, et al. Nondestructive determination of common indicators of beef for freshness assessment using airflow-three dimensional (3D) machine vision technique and machine learning[J]. Journal of Food Engineering, 2023, 340: 111305. DOI:10.1016/j.jfoodeng.2022.111305.