PDF (2.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

High Ion-Selectivity of Garnet Solid Electrolyte Enabling Separation of Metallic Lithium

Haitian Zhang1,2Jialiang Lang1Kai Liu2,3Yang Jin4Kuangyu Wang2Yulong Wu2Siqi Shi5Li Wang1Hong Xu1Xiangming He1 Hui Wu2
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 10084, China
School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 10084, China
School of New Energy, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
School of Electrical Engineering, Research Center of Grid Energy Storage and Battery Application, Zhengzhou University, Zhengzhou 450001, China
School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Show Author Information

Abstract

Ionic selectivity is of significant importance in both fundamental science and practical applications. For instance, an ion-selective material allows the passage of a particular kind of ions while blocking the others, which could be used for purification of materials. Herein, the Li-ion-selectivity of a garnet-type solid electrolyte is discussed by comparing the difference of activation energy between different ions migrating in solids. The high ion-selectivity is confirmed by harvesting high-purity metallic lithium (99.98 wt%) from low-lithium-purity sources (80 wt%) at a moderate temperature (190 ℃). This gives it huge potential in separating lithium with impurities especially alkali and alkali-earth elements. The cost of metallic lithium production is only 25% of the international lithium price. The proposed electrochemical metallic lithium separating method is advantageous compared with the traditional process in terms of efficiency, safety, and cost.

Electronic Supplementary Material

Video
eem-6-6-e12425_ESM2.avi
Download File(s)
eem-6-6-e12425_ESM1.docx (850.3 KB)

References

[1]

R. S. Chen, Q. H. Li, X. Q. Yu, L. Q. Chen, H. Li, Chem. Rev. 2020, 120, 6820.

[2]

N. Zhao, W. Khokhar, Z. J. Bi, C. Shi, X. X. Guo, L. Z. Fan, C. W. Nan, Solid Garnet Batt. Joule 2019, 3, 1190.

[3]

W. P. Chen, H. Duan, J. L. Shi, Y. M. Qian, J. Wan, X. D. Zhang, H. Sheng, B. Guan, R. Wen, Y. X. Yin, S. Xin, Y. G. Guo, L. J. Wan, J. Am. Chem. Soc. 2021, 143, 5717.

[4]

J. Lang, Y. Jin, K. Liu, Y. Long, H. Zhang, L. Qi, H. Wu, Y. Cui, Nat. Sustain. 2020, 3, 386.

[5]

J. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013.

[6]

A. Manthiram, X. W. Yu, S. F. Wang, Nat. Rev. Mater. 2017, 2, 4.

[7]

X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403.

[8]

D. Larcher, J. M. Tarascon, Nat. Chem. 2015, 7, 19.

[9]

W. Q. Xu, N. Birbilis, G. Sha, Y. Wang, J. E. Daniels, Y. Xiao, M. Ferry, Nat. Mater. 2015, 14, 1229.

[10]

L. Y. Yang, C. L. Wang, H. Qin, D. L. Zhang, W. X. Tian, G. H. Su, S. Z. Qiu, Ann. Nucl. Energy 2021, 158, 108301.

[11]

F. Moro, A. Colangeli, A. Del Nevo, D. Flammini, G. Mariano, E. Martelli, R. Mozzillo, S. Noce, R. Villari, Fusion Eng. Des. 2020, 160, 112514.

[12]

H. Chen, Y. F. Yang, D. T. Boyle, Y. K. Jeong, R. Xu, L. S. de Vasconcelos, Z. J. Huang, H. S. Wang, H. X. Wang, W. X. Huang, H. Q. Li, J. Y. Wang, H. K. Gu, R. Matsumoto, K. Motohashi, Y. Nakayama, K. J. Zhao, Y. Cui, Nat. Energy 2021, 6, 790.

[13]

M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433.

[14]

C. Liu, Y. B. Li, D. C. Lin, P. C. Hsu, B. F. Liu, G. B. Yan, T. Wu, Y. Cui, S. Chu, Joule 2020, 4, 1459.

[15]

X. Zhang, A. G. Han, Y. G. Yang, J. Mater. Chem. A 2020, 8, 22455.

[16]

G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. S. Ryder, L. Gaines, P. Anderson, Nature 2019, 575, 75.

[17]

S. X. Yang, F. Zhang, H. P. Ding, P. He, H. S. Zhou, Joule 2018, 2, 1648.

[18]

X. Xu, Y. M. Chen, P. Y. Wan, K. Gasem, K. Y. Wang, T. He, H. Adidharma, M. H. Fan, Prog. Mater. Sci. 2016, 84, 276.

[19]

J. F. Song, L. D. Nghiem, X. M. Li, T. He, Environ. Sci.-Wat. Res. Technol. 2017, 3, 593.

[20]

P. Xu, J. Hong, X. M. Qian, Z. W. Xu, H. Xia, X. C. Tao, Z. Z. Xu, Q. Q. Ni, J. Mater. Sci. 2021, 56, 16.

[21]

Y. Sun, Q. Wang, Y. H. Wang, R. P. Yun, X. Xiang, Purif. Technol. 2021, 256, 117807.

[22]

Z. W. Lan Haicang, H. Chuqian, J. Rare Met. 1998, 22, 286.

[23]

Z. L. Z. H. B. Y. Y. Dai, Yunnan Metal. 2001, 30, 31.

[24]

G. A. Kolobov, A. V. Karpenko, Sci. Technol. 2016, 1, 3.

[25]

W. L. Chen, B. Yang, L. Y. Chai, X. B. Min, Y. N. Dai, X. Yu, C. F. Zhang, Trans. Nonferrous Met. Soc. China 2001, 11, 937.

[26]

W. W. Ping, C. W. Wang, Z. W. Lin, E. Hitz, C. P. Yang, H. Wang, L. B. Hu, Adv. Energy Mater. 2020, 10, 2000702.

[27]

B. Kinzer, A. L. Davis, T. Krauskopf, H. Hartmann, W. S. LePage, E. Kazyak, J. Janek, N. P. Dasgupta, J. Sakamoto, Matter 2021, 4, 1947.

[28]

J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, J. Akimoto, Chem. Lett. 2011, 40, 60.

[29]

S. Hull, Rep. Prog. Phys. 2004, 67, 1233.

[30]

X. F. He, Y. Z. Zhu, Y. F. Mo, Nat. Commun. 2017, 8, 15893.

[31]

Y. Ren, Z. Y. Zou, Q. Zhao, D. Wang, J. Yu, S. Q. Shi, Acta Phys. Sin. 2020, 69, 226601.

[32]

S. Q. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, W. W. Ju, C. Y. Ouyang, R. J. Xiao, Chin. Phys. B 2016, 25, 018212.

[33]

P. Hohenberg, W. Kohn, Phys. Rev. B 1964, 136, B864.

[34]

W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, 1133.

[35]

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Zeitschrift Fur Kristallographie 2005, 220, 567.

[36]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[37]

B. He, S. T. Chi, A. J. Ye, P. H. Mi, L. W. Zhang, B. W. Pu, Z. Y. Zou, Y. B. Ran, Q. Zhao, D. Wang, W. Q. Zhang, J. T. Zhao, S. Adams, M. Avdeev, S. Q. Shi, Sci. Data 2020, 7, 151.

Energy & Environmental Materials
Cite this article:
Zhang H, Lang J, Liu K, et al. High Ion-Selectivity of Garnet Solid Electrolyte Enabling Separation of Metallic Lithium. Energy & Environmental Materials, 2023, 6(6). https://doi.org/10.1002/eem2.12425
Metrics & Citations  
Article History
Copyright
Return