PDF (2.9 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

MXene-Based Quantum Dots Optimize Hydrogen Production via Spontaneous Evolution of Cl- to O-Terminated Surface Groups

Yuhua LiuXiaoyu ZhangWei Zhang()Xin GeYan WangXu ZouXinyan ZhouWeitao Zheng()
Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun 130012, China
Show Author Information

Abstract

MXene quantum dots (MQDs) offer wide applications owing to the abundant surface chemistry, tunable energy-level structure, and unique properties. However, the application of MQDs in electrochemical energy conversion, including hydrogen evolution reaction (HER), remains to be realized, as it remains a challenge to precisely control the types of surface groups and tune the structure of energy levels in MQDs, owing to the high surface energy–induced strong agglomeration in post-processing. Consequently, the determination of the exact catalytically active sites and processes involved in such an electrocatalysis is challenging because of the complexity of the synthetic process and reaction conditions. Herein, we demonstrated the spontaneous evolution of the surface groups of the Ti2CTx MQDs (x: the content of O atom), i.e., replacement of the -Cl functional groups by O-terminated ones during the cathode reaction. This process resulted in a low Gibbs free energy (0.26 eV) in HER. Our steady Ti2COx/Cu2O/Cu foam systems exhibited a low overpotential of 175 mV at 10 mA cm−2 in 1 M aq. KOH, and excellent operational stability over 165 h at a constant current density of −10 mA cm−2.

Electronic Supplementary Material

Download File(s)
eem-6-6-e12438_ESM.doc (12.1 MB)

References

[1]

F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo, Y. Gogotsi, Science 2016, 353, 1137.

[2]

X. Wang, N. Li, J. A. Webb, L. D. Pfefferle, G. L. Haller, Appl. Catal. B Environ. 2010, 101, 21.

[3]

J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, R.-S. Liu, C.-P. Han, Y. Li, Y. Gogotsi, G. Wang, Nat. Catal. 2018, 1, 985.

[4]

S. Guo, D. Wen, Y. Zhai, S. Dong, E. Wang, ACS Nano 2010, 4, 3959.

[5]

X. Zhang, W. Zhang, J. Dai, M. Sun, J. Zhao, L. Ji, L. Chen, F. Zeng, F. Yang, B. Huang, L. Dai, InfoMat 2022, 4, e12273.

[6]

C. Wang, Y. Tian, Y. Gu, K.-H. Xue, H. Sun, X. Miao, L. Dai, Nano Energy 2021, 85, 106030.

[7]

K. Chu, X. Li, Y. Tian, Q. Li, Y. Guo, Energy Environ Materials 2022. DOI: https://doi.org/10.1002/eem1002.12247.

[8]

Y. Zhao, L. Li, D. Liu, Z. Wu, Y. Wang, J. Liu, G. Shao, Int. J. Hydrog. Energy 2021, 46, 15561.

[9]

M. Li, L. Xiao, D. Wang, H. Dong, B. Deng, J. Liu, Chin. Chem. Lett. 2019, 30, 2328.

[10]

B.-Q. Li, C.-X. Zhao, J.-N. Liu, Q. Zhang, Adv. Mater. 2019, 31, 1808173.

[11]

W. Zhang, W. Zheng, Adv. Funct. Mater. 2016, 26, 2988.

[12]

H. Wu, Q. Yu, C.-Y. Lao, M. Qin, W. Wang, Z. Liu, C. Man, L. Wang, B. Jia, X. Qu, Energy Storage Materials 2019, 18, 43.

[13]

X. Jiang, A. V. Kuklin, A. Baev, Y. Ge, H. Ågren, H. Zhang, P. N. Prasad, Phys. Rep. 2020, 848, 1.

[14]

B. Mohanty, L. Giri, B. K. Jena, Energy Fuel 2021, 35, 14304.

[15]

M. Safaei, M. R. Shishehbore, J. Mater. Sci. 2021, 56, 17942.

[16]

M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248.

[17]

B. Shao, Z. Liu, G. Zeng, H. Wang, Q. Liang, Q. He, M. Cheng, C. Zhou, L. Jiang, B. Song, J. Mater. Chem. A 2020, 8, 7508.

[18]

T. Takagahara, K. Takeda, Phys. Rev. B 1992, 46, 15578.

[19]

W. Sun, S. A. Shah, Y. Chen, Z. Tan, H. Gao, T. Habib, M. Radovic, M. J. Green, J. Mater. Chem. A 2017, 5, 21663.

[20]

C. Zhang, Y. Ma, X. Zhang, S. Abdolhosseinzadeh, H. Sheng, W. Lan, A. Pakdel, J. Heier, F. Nüesch, Energy Environ. Materials 2020, 3, 29.

[21]

R. Tang, S. Zhou, C. Li, R. Chen, L. Zhang, Z. Zhang, L. Yin, Adv. Funct. Mater. 2020, 31, 2100955.

[22]

Y. Cheng, X. Li, P. Shen, Y. Guo, K. Chu, Energy Environ Materials 2022. DOI: https://doi.org/10.1002/eem1002.12268.

[23]

F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B Environ. 2020, 272, 119006.

[24]

S. Lin, N. Zhang, F. Wang, J. Lei, L. Zhou, Y. Liu, J. Zhang, ACS Sustain. Chem. Eng. 2021, 9, 481.

[25]

Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li, Z. Wang, Y. Huang, Y. Huang, Q. Deng, J. Zhou, S. Du, Q. Huang, C. Zhi, Adv. Mater. 2017, 29, 1604847.

[26]

Y. Cao, T. Wu, K. Zhang, X. Meng, W. Dai, D. Wang, H. Dong, X. Zhang, ACS Nano 2019, 13, 1499.

[27]

A. Rafieerad, W. Yan, K. N. Alagarsamy, A. Srivastava, N. Sareen, R. C. Arora, S. Dhingra, Adv. Funct. Mater. 2021, 31, 2106786.

[28]

X. Li, F. Liu, D. Huang, N. Xue, Y. Dang, M. Zhang, L. Zhang, B. Li, D. Liu, L. Wang, H. Liu, X. Tao, Adv. Funct. Mater. 2020, 30, 2000308.

[29]

X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan, J. Zhu, D. Zhou, Y. Wu, C. Chen, H. Song, Adv. Funct. Mater. 2020, 30, 2003295.

[30]

X. Zhou, Y. Qin, X. X. He, Q. Li, J. Sun, Z. B. Lei, Z. H. Liu, ACS Appl. Mater. Interfaces 2020, 12, 11833.

[31]

L. Song, S. Zhu, L. Tong, W. Wang, C. Ouyang, F. Xu, Y. Wang, Materials Adv. 2021, 2, 5622.

[32]

Y. Yuan, L. Jiang, X. Li, P. Zuo, X. Zhang, Y. Lian, Y. Ma, M. Liang, Y. Zhao, L. Qu, Adv. Mater. 2021, 34, 2110013.

[33]

H. Mao, C. Gu, S. Yan, Q. Xin, S. Cheng, P. Tan, X. Wang, F. Xiu, X. Liu, J. Liu, W. Huang, L. Sun, Adv. Electron. Materials 2020, 6, 1900493.

[34]

S. Lu, L. Sui, Y. Liu, X. Yong, G. Xiao, K. Yuan, Z. Liu, B. Liu, B. Zou, B. Yang, Adv. Sci. 2019, 6, 1801470.

[35]

D. Huang, Y. Xie, D. Lu, Z. Wang, J. Wang, H. Yu, H. Zhang, Adv. Mater. 2019, 31, 1901117.

[36]

F. Yang, Y. Ge, T. Yin, J. Guo, F. Zhang, X. Tang, M. Qiu, W. Liang, N. Xu, C. Wang, Y. Song, S. Xu, S. Xiao, Acs Appl. Nano Materials 2020, 3, 11850.

[37]

A. D. Handoko, K. D. Fredrickson, B. Anasori, K. W. Convey, L. R. Johnson, Y. Gogotsi, A. Vojvodic, Z. W. Seh, ACS Appl. Energy Materials 2018, 1, 173.

[38]

S. Li, P. Tuo, J. Xie, X. Zhang, J. Xu, J. Bao, B. Pan, Y. Xie, Nano Energy 2018, 47, 512.

[39]

Y. Jiang, T. Sun, X. Xie, W. Jiang, J. Li, B. Tian, C. Su, ChemSusChem 2019, 12, 1368.

[40]

S. Intikhab, V. Natu, J. Li, Y. Li, Q. Tao, J. Rosen, M. W. Barsoum, J. Snyder, J. Catal. 2019, 371, 325.

[41]

D. Chen, Y. Zou, S. Wang, Materials Today Energy 2019, 12, 250.

[42]

P. Zhang, Y. Peng, Q. Zhu, R. A. Soomro, N. Sun, B. Xu, Energy Environ. Materials 2022. DOI: https://doi.org/10.1002/eem1002.12379.

[43]

B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Materials 2017, 2, 16098.

[44]

Y.-T. Liu, D. Li, J. Yu, B. Ding, Angew. Chem. Int. Ed. 2019, 58, 16439.

[45]

H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, J. W. Chew, Adv. Mater. 2018, 30, 1704561.

[46]

K. Song, Y. Feng, W. Zhang, W. Zheng, J. Energy Chem. 2022, 67, 391.

[47]

X. Chen, J. Li, G. Pan, W. Xu, J. Zhu, D. Zhou, D. Li, C. Chen, G. Lu, H. Song, Sensors Actuators B Chem. 2019, 289, 131.

[48]

H. Wang, R. Zhao, H. Hu, X. Fan, D. Zhang, D. Wang, ACS Appl. Mater. Interfaces 2020, 12, 40176.

[49]

F. Liu, L. Shi, X. Lin, D. Yu, C. Zhang, R. Xu, D. Liu, J. Qiu, L. Dai, Appl. Catal. B Environ. 2022, 302, 120860.

[50]

Y. Cheng, S. Yang, S. P. Jiang, S. Wang, Small Methods 2019, 3, 1800440.

[51]

Y. Xu, X. Jiang, G. Shao, H. Xiang, S. Si, X. Li, T. S. Hu, G. Hong, S. Dong, H. Li, Y. Feng, S. Liu, Energy Environ. Materials 2021, 4, 117.

[52]

Z. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian, P. Chen, Adv. Funct. Mater. 2019, 29, 1806500.

[53]

Y. Feng, K. Song, W. Zhang, X. Zhou, S. J. Yoo, J.-G. Kim, S. Qiao, Y. Qi, X. Zou, Z. Chen, T. Qin, N. Yue, Z. Wang, D. Li, W. Zheng, J. Energy Chem. 2022, 70, 211.

[54]

H. Jin, H. Huang, Y. He, X. Feng, S. Wang, L. Dai, J. Wang, J. Am. Chem. Soc. 2015, 137, 7588.

[55]

L. He, J. Wu, Y. Zhu, Y. Wang, Y. Mei, Ind. Eng. Chem. Res. 2021, 60, 5443.

[56]

W. Li, F. Li, X. Wang, Y. Tang, Y. Yang, W. Gao, R. Li, Appl. Surf. Sci. 2017, 401, 190.

[57]

G. Zhan, J. Zhang, Y. Wang, C. Yu, J. Wu, J. Cui, X. Shu, Y. Qin, H. Zheng, J. Sun, J. Yan, Y. Zhang, C. S. Tiwary, Y. Wu, J. Colloid Interface Sci. 2020, 566, 411.

[58]

G. Gao, A. P. O'Mullane, A. Du, ACS Catal. 2017, 7, 494.

[59]

C. Ling, L. Shi, Y. Ouyang, J. Wang, Chem. Mater. 2016, 28, 9026.

[60]

Z. Kang, M. A. Khan, Y. Gong, R. Javed, Y. Xu, D. Ye, H. Zhao, J. Zhang, J. Mater. Chem. A 2021, 9, 6089.

[61]

S. Bai, M. Yang, J. Jiang, X. He, J. Zou, Z. Xiong, G. Liao, S. Liu, NPJ 2D Materials Appl. 2021, 5, 78.

[62]

G. P. Neupane, B. Wang, M. Tebyetekerwa, H. T. Nguyen, M. Taheri, B. Liu, M. Nauman, R. Basnet, Small 2021, 17, 2006309.

[63]

G. Yang, J. Zhao, S. Yi, X. Wan, J. Tang, Sensors Actuators B Chem. 2020, 309, 127735.

[64]

X. Wu, Z. Wang, M. Yu, L. Xiu, J. Qiu, Adv. Mater. 2017, 29, 1607017.

[65]

T. Li, L. Yao, Q. Liu, J. Gu, R. Luo, J. Li, X. Yan, W. Wang, P. Liu, B. Chen, W. Zhang, W. Abbas, R. Naz, D. Zhang, Angew. Chem. Int. Ed. 2018, 57, 6115.

[66]

C. Zhang, M. Beidaghi, M. Naguib, M. R. Lukatskaya, M.-Q. Zhao, B. Dyatkin, K. M. Cook, S. J. Kim, B. Eng, X. Xiao, D. Long, W. Qiao, B. Dunn, Y. Gogotsi, Chem. Mater. 2016, 28, 3937.

[67]

J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L.-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, M. W. Barsoum, Chem. Mater. 2014, 26, 2374.

[68]

Z. Zhao, W. Zhang, M. Liu, D. Wang, X. Wang, L. Zheng, X. Zou, Z. Wang, D. Li, K. Huang, W. Zheng, Energy Environ. Materials 2022. DOI: https://doi.org/10.1002/eem1002.12342.

[69]

P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu, Y. Tang, J. Lai, Y. Chao, M. Luo, F. Lin, J. Zhou, D. Su, S. Guo, Nano Energy 2019, 56, 127.

[70]

Y. Xie, P. R. C. Kent, Phys. Rev. B 2013, 87, 235441.

[71]

S.-Y. Pang, Y.-T. Wong, S. Yuan, Y. Liu, M.-K. Tsang, Z. Yang, H. Huang, W.-T. Wong, J. Hao, J. Am. Chem. Soc. 2019, 141, 9610.

[72]

K. Zhang, D. Li, H. Cao, Q. Zhu, C. Trapalis, P. Zhu, X. Gao, C. Wang, Chem. Eng. J. 2021, 424, 130340.

[73]

Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.

[74]

C. Tang, D. He, N. Zhang, X. Song, S. Jia, Z. Ke, J. Liu, J. Wang, C. Jiang, Z. Wang, X. Huang, X. Xiao, Energy Environ. Materials 2022. DOI: https://doi.org/10.1002/eem1002.12205.

[75]

X. Liao, R. Lu, L. Xia, Q. Liu, H. Wang, K. Zhao, Z. Wang, Y. Zhao, Energy Environ. Materials 2022, 5, 157.

[76]

J. Zhou, H. Xiao, W. Weng, D. Gu, W. Xiao, J. Energy Chem. 2020, 50, 280.

[77]

L. Peng, X. Zheng, L. Li, L. Zhang, N. Yang, K. Xiong, H. Chen, J. Li, Z. Wei, Appl. Catal. B Environ. 2019, 245, 122.

[78]

J. Cai, Y. Song, Y. Zang, S. Niu, Y. Wu, Y. Xie, X. Zheng, Y. Liu, Y. Lin, X. Liu, G. Wang, Y. Qian, Sci. Adv. 2020, 6, eaaw8113.

[79]

C. Cui, R. Cheng, H. Zhang, C. Zhang, Y. Ma, C. Shi, B. Fan, H. Wang, X. Wang, Adv. Funct. Mater. 2020, 30, 2000693.

[80]

T. Li, Q. Dong, Z. Huang, L. Wu, Y. Yao, J. Gao, X. Wang, H. Zhang, D. Wang, T. Li, R. Shahbazian-Yassar, L. Hu, Adv. Mater. 2022, 34, 2106436.

[81]

H. Jiang, Z. Wang, Q. Yang, L. Tan, L. Dong, M. Dong, Nanomicro Lett. 2019, 11, 31.

[82]

J. Liu, Y. Liu, D. Xu, Y. Zhu, W. Peng, Y. Li, F. Zhang, X. Fan, Appl. Catal. B Environ. 2019, 241, 89.

[83]

W. Qiao, S. Yan, X. Song, X. Zhang, Y. Sun, X. Chen, W. Zhong, Y. Du, RSC Adv. 2015, 5, 97696.

[84]

S. Fletcher, J. Solid State Electrochem. 2009, 13, 537.

[85]

D. Zhao, M. Dai, H. Liu, K. Chen, X. Zhu, D. Xue, X. Wu, J. Liu, Adv. Mater. Interfaces 2019, 6, 1901308.

[86]

Y. Wang, W. Qiu, E. Song, F. Gu, Z. Zheng, X. Zhao, Y. Zhao, J. Liu, W. Zhang, Natl. Sci. Rev. 2018, 5, 327.

[87]

Z. W. Seh, K. D. Fredrickson, B. Anasori, J. Kibsgaard, A. L. Strickler, M. R. Lukatskaya, Y. Gogotsi, T. F. Jaramillo, A. Vojvodic, ACS Energy Lett. 2016, 1, 589.

[88]

K. Zhu, Y. Jin, F. Du, S. Gao, Z. Gao, X. Meng, G. Chen, Y. Wei, Y. Gao, J. Energy Chem. 2019, 31, 11.

[89]

J. Sturala, A. Ambrosi, Z. Sofer, M. Pumera, Angew. Chem. Int. Ed. 2018, 57, 14837.

[90]

S. Ramesh, L. J. Yi, Ionics 2009, 15, 413.

[91]

J. Nordgren, J. Guo, J. Electron Spectrosc. Relat. Phenom. 2000, 110-111, 1.

[92]

M. Terauchi, Y. Sato, H. Hyodo, K. Kimura, J. Phys. Conf. Ser. 2009, 176, 012025.

[93]

M. Terauchi, H. Morito, H. Yamane, S. Koshiya, K. Kimoto, Microscopy 2018, 67, i72–7.

[94]

T. Qin, W. Zhang, Y. Ma, W. Zhang, T. Dong, X. Chu, T. Li, Z. Wang, N. Yue, H. Liu, L. Zheng, X. Fan, X. Lang, Q. Jiang, W. Zheng, Energy Storage Materials 2022, 45, 33.

[95]

Y. Cheng, J. Dai, Y. Song, Y. Zhang, ACS Appl. Energy Materials 2019, 2, 6851.

[96]

C. Ling, L. Shi, Y. Ouyang, Q. Chen, J. Wang, Adv Sci (Weinh) 2016, 3, 1600180.

[97]

Y. Cheng, L. Wang, Y. Li, Y. Song, Y. Zhang, J. Phys. Chem. C 2019, 123, 15629.

[98]

D. A. Kuznetsov, Z. Chen, P. V. Kumar, A. Tsoukalou, A. Kierzkowska, P. M. Abdala, O. V. Safonova, A. Fedorov, C. R. Muller, J. Am. Chem. Soc. 2019, 141, 17809.

[99]

B. Ding, W.-J. Ong, J. Jiang, X. Chen, N. Li, Appl. Surf. Sci. 2020, 500, 143987.

[100]

G. R. Berdiyorov, EPL (Europhysics Letters) 2015, 111, 67002.

[101]

Y. Xie, M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, X. Yu, K.-W. Nam, X.-Q. Yang, A. I. Kolesnikov, P. R. C. Kent, J. Am. Chem. Soc. 2014, 136, 6385.

Energy & Environmental Materials
Cite this article:
Liu Y, Zhang X, Zhang W, et al. MXene-Based Quantum Dots Optimize Hydrogen Production via Spontaneous Evolution of Cl- to O-Terminated Surface Groups. Energy & Environmental Materials, 2023, 6(6). https://doi.org/10.1002/eem2.12438
Metrics & Citations  
Article History
Copyright
Return