PDF (2.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Anion-Regulated Weakly Solvating Electrolytes for High-Voltage Lithium Metal Batteries

Zhipeng Jiang1,2Jisheng Mo1Chen Li1Haiwen Li4Qingan Zhang1,2Ziqi Zeng3Jia Xie3 ()Yongtao Li1,2()
School of Materials Science and Engineering & Low-Carbon New Materials Research Center, Anhui University of Technology, Maanshan 243002, China
Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Hefei General Machinery Research Institute, Hefei 230031, China
Show Author Information

Abstract

Development of advanced high-voltage electrolytes is key to achieving high-energy-density lithium metal batteries (LMBs). Weakly solvating electrolytes (WSE) can produce unique anion-driven interphasial chemistry via altering the solvating power of the solvent, but it is difficult to dissolve the majority of Li salts and fail to cycle at a cut-off voltage above 4.5 V. Herein, we present a new-type WSE that is regulated by the anion rather than the solvent, and the first realize stable cycling of dimethoxyethane (DME) at 4.6 V without the use of the “solvent-in-salt” strategy. The relationships between the degree of dissociation of salts, the solvation structure of electrolytes, and the electrochemical performance of LMBs were systematically investigated. We found that LiBF4, which has the lowest degree of dissociation, can construct an anion-rich inner solvation shell, resulting in anion-derived anode/cathode interphases. Thanks to such unusual solvation structure and interphasial chemistry, the Li-LiCoO2 full cell with LiBF4-based WSE could deliver excellent rate performance (115 mAh g−1 at 10 C) and outstanding cycling stability even under practical conditions, including high loading (10.7 mg cm−2), thin Li (50 μm), and limited electrolyte (1.2 μL mg−1).

Electronic Supplementary Material

Download File(s)
eem-6-6-e12440_ESM.docx (10.2 MB)

References

[1]

M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.

[2]

M. S. Whittingham, Nano Lett. 2020, 20, 8435.

[3]

S. Zhao, Z. Guo, K. Yan, S. Wan, F. He, B. Sun, G. Wang, Energy Storage Mater. 2021, 34, 716.

[4]

D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.

[5]

Y. Wu, L. Xie, H. Ming, Y. Guo, J.-Y. Hwang, W. Wang, X. He, L. Wang, H. N. Alshareef, Y.-K. Sun, J. Ming, ACS Energy Lett. 2020, 5, 807.

[6]

Z. Jiang, Z. Zeng, H. Zhang, L. Yang, W. Hu, X. Liang, J. Feng, C. Yu, S. Cheng, J. Xie, iScience 2022, 25, 103490.

[7]

J.-G. Zhang, W. Xu, J. Xiao, X. Cao, J. Liu, Chem. Rev. 2020, 120, 13312.

[8]

K.-C. Pu, X. Zhang, X.-L. Qiu, J.-J. Hu, H.-W. Li, M.-X. Gao, H.-G. Pan, Y.-F. Liu, Rare Metals 2020, 39, 616.

[9]

Z. Jiang, H.-J. Guo, Z. Zeng, X. Chen, Y. Lei, X. Liang, Z. Han, W. Hu, J. Feng, R. Wen, S. Cheng, J. Xie, ACS Appl. Mater. Interfaces 2021, 13, 41555.

[10]

J. Zhang, P. F. Wang, P. Bai, H. Wan, S. Liu, S. Hou, X. Pu, J. Xia, W. Zhang, Z. Wang, B. Nan, X. Zhang, J. Xu, C. Wang, Adv. Mater. 2021, 34, 2108353.

[11]

S. Yuan, T. Kong, Y. Zhang, P. Dong, Y. Zhang, X. Dong, Y. Wang, Y. Xia, Angew. Chem. Int. Ed. 2021, 60, 25624.

[12]

H. Wang, Z. Yu, X. Kong, S. C. Kim, D. T. Boyle, J. Qin, Z. Bao, Y. Cui, Joule 2022, 6, 588.

[13]

X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1605989.

[14]

Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen, F. Huang, R. Cao, G. Zhang, S. Jiao, Angew. Chem. Int. Ed. 2020, 59, 3505.

[15]

Y.-H. Tan, G.-X. Lu, J.-H. Zheng, F. Zhou, M. Chen, T. Ma, L.-L. Lu, Y.-H. Song, Y. Guan, J. Wang, Z. Liang, W.-S. Xu, Y. Zhang, X. Tao, H.-B. Yao, Adv. Mater. 2021, 33, 2102134.

[16]

J. Alvarado, M. A. Schroeder, T. P. Pollard, X. Wang, J. Z. Lee, M. Zhang, T. Wynn, M. Ding, O. Borodin, Y. S. Meng, K. Xu, Energy Environ. Sci. 2019, 12, 780.

[17]

R. Weber, M. Genovese, A. J. Louli, S. Hames, C. Martin, I. G. Hill, J. R. Dahn, Nat. Energy 2019, 4, 683.

[18]

J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang, W. Xu, Nat. Energy 2017, 2, 17012.

[19]

J. Wang, Y. Yamada, K. Sodeyama, C. H. Chiang, Y. Tateyama, A. Yamada, Nat. Commun. 2016, 7, 12032.

[20]

M. Jia, C. Zhang, Y. Guo, L. Peng, X. Zhang, W. Qian, L. Zhang, S. Zhang, Energy Environ. Mater. 2021, 4, 1-9.

[21]

J. Chen, T. Liu, L. Gao, Y. Qian, Y. Liu, X. Kong, J. Energy Chem. 2021, 60, 178.

[22]

S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J.-G. Zhang, Adv. Mater. 2018, 30, 1706102.

[23]

X. Ren, L. Zou, X. Cao, M. H. Engelhard, W. Liu, S. D. Burton, H. Lee, C. Niu, B. E. Matthews, Z. Zhu, C. Wang, B. W. Arey, J. Xiao, J. Liu, J.-G. Zhang, W. Xu, Joule 2019, 3, 1662.

[24]

C. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J.-G. Zhang, M. S. Whittingham, J. Xiao, J. Liu, Nat. Energy 2019, 4, 551.

[25]

Y. X. Yao, X. Chen, C. Yan, X. Q. Zhang, W. L. Cai, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2021, 60, 4090.

[26]

Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang, S. C. Kim, J.-C. Lai, X. Kong, J. Qin, Y. Cui, Z. Bao, J. Am. Chem. Soc. 2021, 134, 18703.

[27]

Y. Kondo, T. Abe, Y. Yamada, ACS Appl. Mater. Interfaces 2022, 14, 22706.

[28]

D. Aurbach, E. Markevich, G. Salitra, High Energy Density Rechargeable Batteries Based on Li Metal Anodes, J. Am. Chem. Soc. 2021, 143, 21161.

[29]

K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, J. Am. Chem. Soc. 2011, 133, 13121.

[30]

D. M. Seo, O. Borodin, S. D. Han, P. D. Boyle, W. A. Henderson, Electrolyte Solvation and Ionic Association--Ⅱ, J. Electrochem. Soc. 2012, 159, A1489.

[31]

X.-Q. Zhang, X. Chen, X.-B. Cheng, B.-Q. Li, X. Shen, C. Yan, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 5301.

[32]

T. Hou, G. Yang, N. N. Rajput, J. Self, S.-W. Park, J. Nanda, K. A. Persson, Nano Energy 2019, 64, 103881.

[33]

A. Abouimrane, J. Ding, I. J. Davidson, J. Power Sources 2009, 189, 693.

[34]

J.-Y. Liang, X.-D. Zhang, Y. Zhang, L.-B. Huang, M. Yan, Z.-Z. Shen, R. Wen, J. Tang, F. Wang, J.-L. Shi, L.-J. Wan, Y.-G. Guo, J. Am. Chem. Soc. 2021, 143, 16768.

[35]

X. Zheng, L. Huang, W. Luo, H. Wang, Y. Dai, X. Liu, Z. Wang, H. Zheng, Y. Huang, ACS Energy Lett. 2021, 6, 2054.

[36]

M. Xia, M. Lin, G. Liu, Y. Cheng, T. Jiao, A. Fu, Y. Yang, M. Wang, J. Zheng, Chem. Eng. J. 2022, 442, 136351.

[37]

H. K. Bezabh, S.-F. Chiu, T. M. Hagos, M.-C. Tsai, Y. Nikodimos, H. G. Redda, W.-N. Su, B. J. Hwang, J. Power Sources 2021, 494, 229760.

[38]

X.-Q. Zhang, X. Chen, L.-P. Hou, B.-Q. Li, X.-B. Cheng, J.-Q. Huang, Q. Zhang, ACS Energy Lett. 2019, 4, 411.

[39]

Z. Jiang, Z. Zeng, B. Zhai, X. Li, W. Hu, H. Zhang, S. Cheng, J. Xie, J. Power Sources 2021, 506, 230086.

[40]

S. Li, Q. Liu, W. Zhang, L. Fan, X. Wang, X. Wang, Z. Shen, X. Zang, Y. Zhao, F. Ma, Y. Lu, Adv. Sci. 2021, 8, 2003240.

[41]

W. Dai, N. Dong, Y. Xia, S. Chen, H. Luo, Y. Liu, Z. Liu, Electrochim. Acta 2019, 320, 134633.

[42]

J. Fu, X. Ji, J. Chen, L. Chen, X. Fan, D. Mu, C. Wang, Angew. Chem. Int. Ed. 2020, 132, 22378.

[43]

G. G. Amatucci, J. M. Tarascon, L. C. Klein, Electrolyte Solvation and Ionic Association--Ⅱ, J. Electrochem. Soc. 1996, 143, 1114.

[44]

Y. Huang, Y. Zhu, H. Fu, M. Ou, C. Hu, S. Yu, Z. Hu, C.-T. Chen, G. Jiang, H. Gu, H. Lin, W. Luo, Y. Huang, Angew. Chem. Int. Ed. 2021, 60, 4682.

[45]

J.-N. Zhang, Q. Li, C. Ouyang, X. Yu, M. Ge, X. Huang, E. Hu, C. Ma, S. Li, R. Xiao, W. Yang, Y. Chu, Y. Liu, H. Yu, X.-Q. Yang, X. Huang, L. Chen, H. Li, Nat. Energy 2019, 4, 594.

[46]

X. Wang, S. Wang, H. Wang, W. Tu, Y. Zhao, S. Li, Q. Liu, J. Wu, Y. Fu, C. Han, F. Kang, B. Li, Adv. Mater. 2021, 33, 2007945.

Energy & Environmental Materials
Cite this article:
Jiang Z, Mo J, Li C, et al. Anion-Regulated Weakly Solvating Electrolytes for High-Voltage Lithium Metal Batteries. Energy & Environmental Materials, 2023, 6(6). https://doi.org/10.1002/eem2.12440
Metrics & Citations  
Article History
Copyright
Return