PDF (7.3 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Hierarchical Encapsulation and Rich sp2 N Assist Sb2Se3-Based Conversion-Alloying Anode for Long-Life Sodium- and Potassium-Ion Storage

Shaokun Chong1 ()Meng Ma1Lingling Yuan1Shuangyan Qiao1Shihong Dong1Huakun Liu2()Shixue Dou2()
Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong NSW 2522, Australia
Show Author Information

Abstract

Sodium- and potassium-ion batteries have exhibited great application potential in grid-scale energy storage due to the abundant natural resources of Na and K. Conversion-alloying anodes with high theoretical capacity and low-operating voltage are ideal option for SIBs and PIBs but suffer the tremendous volume variations. Herein, a hierarchically structural design and sp2 N-doping assist a conversion-alloying material, Sb2Se3, to achieve superior life span more than 1000 cycles. It is confirmed that the Sb2Se3 evolves into nano grains that absorb on the sp2 N sites and in situ form chemical bonding of C-N-Sb after initial discharge. Simulation results indicate that sp2 N has more robust interaction with Sb and stronger adsorption capacities to Na+ and K+ than that of sp3 N, which contributes to the durable cycling ability and high electrochemical activity, respectively. The ex situ transmission electron microscopy and X-ray photoelectron spectroscopy results suggest that the Sb2Se3 electrode experiences conversion-alloying dual mechanisms based on 12-electron transfer per formula unit.

Electronic Supplementary Material

Download File(s)
eem-6-6-e12458_ESM.pdf (1.5 MB)

References

[1]

K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Sci. Adv. 2018, 4, eaas9820.

[2]

W. Zhang, Y. Liu, Z. Guo, Sci. Adv. 2019, 5, eaav7412.

[3]

B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.

[4]

B. Kang, G. Ceder, Nature 2009, 458, 190.

[5]

X. Wu, D. P. Leonard, X. Ji, Chem. Mater. 2017, 29, 5031.

[6]

N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 2014, 114, 11636.

[7]

S. Liu, L. Kang, S. C. Jun, Adv. Mater. 2021, 33, 2004689.

[8]

K. Yao, Z. Xu, M. Ma, J. Li, F. Lu, J. Huang, Adv. Funct. Mater. 2020, 30, 2001484.

[9]

K.-T. Chen, S. Chong, L. Yuan, Y.-C. Yang, H.-Y. Tuan, Energy Storage Mater. 2021, 39, 239.

[10]

K. Yao, Z. Xu, J. Huang, M. Ma, L. Fu, X. Shen, J. Li, M. Fu, Small 2019, 15, 1805405.

[11]

H. Kim, H. Ji, J. Wang, G. Ceder, Trends Chem. 2019, 1, 682.

[12]

Y.-H. Zhu, X. Yang, D. Bao, X.-F. Bie, T. Sun, S. Wang, Y.-S. Jiang, X.-B. Zhang, J.-M. Yan, Q. Jiang, Joule 2018, 2, 736.

[13]

N. Voronina, S. Myung, Energy Mater. Adv. 2021, 2021, 9819521.

[14]

D. Gong, C. Wei, Z. Liang, Y. Tang, Small Sci. 2021, 1, 2100014.

[15]

Z. Jian, W. Luo, X. Ji, J. Am. Chem. Soc. 2015, 137, 11566.

[16]

Z. Wei, A. Wang, X. Guan, G. Li, Z. Yang, C. Huang, J. Zhang, L. Ren, J. Luo, X. Liu, Energy Environ. Mater. 2021. https://doi.org/10.1002/eem2.12244.

[17]

B. Yin, S. Liang, D. Yu, B. Cheng, I. L. Egun, J. Lin, X. Xie, H. Shao, H. He, A. Pan, Adv. Mater. 2021, 33, 2100808.

[18]

Z. Tian, Y. Zhang, J. Zhu, Q. Li, T. Liu, M. Antonietti, Adv. Energy Mater. 2021, 11, 2102489.

[19]

B. Chen, D. Chao, E. Liu, M. Jaroniec, N. Zhao, S.-Z. Qiao, Energy Environ. Sci. 2020, 13, 1096.

[20]

W. Liu, Z. Chen, Z. Zhang, P. Jiang, Y. Chen, E. Paek, Y. Wang, D. Mitlin, Energy Environ. Sci. 2021, 14, 382.

[21]

S. Y. Han, C. Lee, J. A. Lewis, D. Yeh, Y. Liu, H.-W. Lee, M. T. McDowell, Joule 2021, 5, 2450.

[22]

K. Yao, Z. Xu, Z. Li, X. Liu, X. Shen, L. Cao, J. Huang, ChemSusChem 2018, 11, 2130.

[23]

X. Zhang, Z. Ju, Y. Zhu, K. J. Takeuchi, E. S. Takeuchi, A. C. Marschilok, G. Yu, Adv. Energy Mater. 2021, 11, 2000808.

[24]

J. Mei, T. Liao, Z. Sun, Energy Environ. Mater. 2022, 5, 115.

[25]

W. Zhang, M. Sun, J. Yin, W. Wang, G. Huang, X. Qiu, U. Schwingen-schlögl, H. N. Alshareef, Nano Energy 2021, 87, 106184.

[26]

W. Zhang, J. Yin, M. Sun, W. Wang, C. Chen, M. Altunkaya, A.-H. Emwas, Y. Han, U. Schwingenschlögl, H. N. Alshareef, Adv. Mater. 2020, 32, 2000732.

[27]

K. Chu, X. Zhang, Y. Yang, Z. Li, L. Wei, G. Yao, F. Zheng, Q. Chen, Carbon 2021, 184, 277.

[28]

Z. Tan, K. Ni, G. Chen, W. Zeng, Z. Tao, M. Ikram, Q. Zhang, H. Wang, L. Sun, X. Zhu, X. Wu, H. Ji, R. S. Ruoff, Y. Zhu, Adv. Mater. 2017, 29, 1603414.

[29]

Y. Tang, X. Wang, J. Chen, X. Wang, D. Wang, Z. Mao, Carbon 2021, 174, 98.

[30]

Y. Shi, G. Liu, R. Jin, H. Xu, Q. Wang, S. Gao, Carbon Energy 2019, 1, 253.

[31]

F. Liu, S. Liu, J. Meng, F. Xia, Z. Xiao, Z. Liu, Q. Li, J. Wu, L. Mai, Nano Energy 2020, 73, 104758.

[32]

M. K. Sarwar, Z. Xu, K. Yao, X. Liu, Y. Wang, J. Yang, J. Huang, Mater. Today Chem. 2022, 23, 100713.

[33]

Y. Zhang, S. Li, L. Cheng, Y. Li, X. Ren, P. Zhang, L. Sun, H. Y. Yang, J. Mater. Chem. A 2021, 9, 3388.

[34]

S. Wang, P. Xiong, X. Guo, J. Zhang, X. Gao, F. Zhang, X. Tang, P. H. L. Notten, G. Wang, Adv. Funct. Mater. 2020, 30, 2001588.

[35]

J. Li, R. Wang, P. Guo, X. Liu, Y. Hu, Z. Xu, Y. Liu, L. Cao, J. Huang, K. Kajiyoshi, ACS Nano 2021, 15, 6410.

[36]

P. Ge, X. Cao, H. Hou, S. Li, X. Ji, ACS Appl. Mater. Interfaces 2017, 9, 34979.

[37]

J. Ma, Y. Wang, Y. Wang, Q. Chen, J. Lian, W. Zheng, J. Phys. Chem. C 2009, 113, 13588.

[38]

L. Xia, Z. Yang, B. Tang, F. Li, J. Wei, Z. Zhou, Small 2021, 17, 2006016.

[39]

Y. Kuang, C. Chen, D. Kirsch, L. Hu, Adv. Energy Mater. 2019, 9, 1901457.

[40]

Q. Li, P. Du, Y. Yuan, W. Yao, Z. Ma, B. Guo, Y. Lyu, P. Wang, H. Wang, A. Nie, R. Shahbazian-Yassar, J. Lu, Nano Lett. 2019, 19, 3074.

[41]

Z. Yang, W. Li, G. Zhang, J. Wang, J. Zuo, Q. Xu, H. Shan, X. He, M. Lv, J. Hu, W. Huang, J. Zhang, X. Li, Nano Energy 2022, 93, 106764.

[42]

X. Ou, C. Yang, X. Xiong, F. Zheng, Q. Pan, C. Jin, M. Liu, K. Huang, Adv. Funct. Mater. 2017, 27, 1606242.

[43]

K.-H. Nam, C.-M. Park, J. Power Sources 2019, 433, 126639.

[44]

Z. Chen, J. Wu, X. Liu, G. Xu, L. Yang, Ionics 2019, 25, 3737.

[45]

D. A. Aikens, J. Chem. Educ. 1983, 60, A25.

[46]

J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.

[47]

Z. Liang, Y. Xia, G. Ba, H. Li, Q. Deng, W. Hou, Sci. Technol. 2019, 9, 6627.

[48]

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, Z. Krist-Cryst, Mater. 2005, 220, 567.

Energy & Environmental Materials
Cite this article:
Chong S, Ma M, Yuan L, et al. Hierarchical Encapsulation and Rich sp2 N Assist Sb2Se3-Based Conversion-Alloying Anode for Long-Life Sodium- and Potassium-Ion Storage. Energy & Environmental Materials, 2023, 6(6). https://doi.org/10.1002/eem2.12458
Metrics & Citations  
Article History
Copyright
Return