PDF (1.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

The Contact Interface Engineering of All-Sulfide-Based Solid State Batteries via Infiltrating Dissoluble Sulfide Electrolyte

Lei XiYu LiDechao ZhangZhengbo LiuXijun XuJun Liu()
Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
Show Author Information

Abstract

All-solid-state lithium batteries (ASSLBs) based on sulfide solid electrolytes (SEs) are one of the most promising strategies for next-generation energy storage systems and electronic devices. However, the poor chemical/electrochemical stability of sulfide SEs with oxide cathode materials and high interfacial impedance, particularly due to physical contact failure, are the major limiting factors to the development of sulfide SEs in ASSLBs. Herein, the composite cathode of MOF-derived Fe7S8@C and Li6PS5Br fabricated by an infiltration method (IN–Fe7S8) with dissoluble sulfide electrolyte (dissoluble SE) is reported. Dissoluble SE can easily infiltrate the porous sheet-type Fe7S8@C cathode to homogeneously contact with Fe7S8 nanoparticles that are embedded in the surrounding carbon matrixes and form a fast ionic transport network. Benefiting from applying dissoluble SE and Fe7S8@C, the IN-Fe7S8-based cells displayed a reversible capacity of 510 mAh g−1 after 180 cycles at 0.045 mA cm−2 at 30 °C. This work demonstrates a novel and practical method for the development of high-performance all-sulfide-based solid state batteries.

Electronic Supplementary Material

Download File(s)
eem-6-6-e12461_ESM.docx (5.9 MB)

References

[1]

Z. Liang, J. Shen, X. Xu, F. Li, J. Liu, B. Yuan, Y. Yu, M. Zhu, Adv. Mater. 2022. DOI: 10.1002/adma.202200102.

[2]

Y. Yang, S. Yao, Z. Liang, Y. Wen, Z. Liu, Y. Wu, J. Liu, M. Zhu, ACS Energy Lett. 2022, 7, 885.

[3]

D. Zhang, X. Xu, Y. Qin, S. Ji, Y. Huo, Z. Wang, Z. Liu, J. Shen, J. Liu, Chem. Eur. J. 2020, 26, 1720.

[4]

D. Zhang, Z. Liu, Y. Wu, S. Ji, Z. Yuan, J. Liu, M. Zhu, Adv. Sci. 2022, 9, 2104277.

[5]

Y. Li, D. Zhang, X. Xu, Z. Wang, Z. Liu, J. Shen, J. Liu, J. Energy Chem. 2021, 60, 32.

[6]

Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora, H. Zhu, Adv. Mater. 2019, 31, 1901131.

[7]

H. Lee, P. Oh, J. Kim, H. Cha, S. Chae, S. Lee, J. Cho, Adv. Mater. 2019, 31, 1900376.

[8]

S. Noh, W. T. Nichols, M. Cho, D. Shin, J. Electroceram. 2018, 40, 293.

[9]

M. Nagao, A. Hayashi, M. Tatsumisago, J. Mater. Chem. 2012, 22, 10015.

[10]

T. A. Yersak, H. A. Macpherson, S. C. Kim, V.-D. Le, C. S. Kang, S.-B. Son, Y.-H. Kim, J. E. Trevey, K. H. Oh, C. Stoldt, S.-H. Lee, Adv. Energy Mater. 2013, 3, 120.

[11]

S. Xu, C. Y. Kwok, L. Zhou, Z. Zhang, I. Kochetkov, L. F. Nazar, Adv. Funct. Mater. 2021, 31, 2004239.

[12]

R. C. Xu, X. L. Wang, S. Z. Zhang, Y. Xia, X. H. Xia, J. B. Wu, J. P. Tu, J. Power Sources 2018, 374, 107.

[13]

Q. Zhang, J. P. Mwizerwa, H. Wan, L. Cai, X. Xu, X. Yao, J. Mater. Chem. A 2017, 5, 23919.

[14]

L. Cai, H. Wan, Q. Zhang, J. P. Mwizerwa, X. Xu, X. Yao, ACS Appl. Mater. Inter. 2020, 12, 33810.

[15]

Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Nat. Energy 2016, 1, 16030.

[16]

Z. Lin, Z. Liu, N. J. Dudney, C. Liang, ACS Nano 2013, 7, 2829.

[17]

S. Choi, J. Ann, J. Do, S. Lim, C. Park, D. Shin, J. Electrochem. Soc. 2019, 166, A5193.

[18]

D. Y. Oh, D. H. Kim, S. H. Jung, J.-G. Han, N.-S. Choi, Y. S. Jung, J. Mater. Chem. A 2017, 5, 20771.

[19]

D. H. S. Tan, A. Banerjee, Z. Deng, E. A. Wu, H. Nguyen, J.-M. Doux, X. Wang, J.-H. Cheng, S. P. Ong, Y. S. Meng, Z. Chen, ACS Appl. Energy Mater. 2019, 2, 6542.

[20]

N. Riphaus, P. Strobl, B. Stiaszny, T. Zinkevich, M. Yavuz, J. Schnell, S. Indris, H. A. Gasteiger, S. J. Sedlmaier, J. Electrochem. Soc. 2018, 165, A3993.

[21]

D. H. Kim, Y.-H. Lee, Y. B. Song, H. Kwak, S.-Y. Lee, Y. S. Jung, ACS Energy Lett. 2020, 5, 718.

[22]

Y. B. Song, D. H. Kim, H. Kwak, D. Han, S. Kang, J. H. Lee, S.-M. Bak, K.-W. Nam, H.-W. Lee, Y. S. Jung, Nano Lett. 2020, 20, 4337.

[23]

D. H. Kim, D. Y. Oh, K. H. Park, Y. E. Choi, Y. J. Nam, H. A. Lee, S.-M. Lee, Y. S. Jung, Nano Lett. 2017, 17, 3013.

[24]

S. Yubuchi, M. Uematsu, C. Hotehama, A. Sakuda, A. Hayashi, M. Tatsumisago, J. Mater. Chem. A 2019, 7, 558.

[25]

N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T. Sasaki, Adv. Mater. 2006, 18, 2226.

[26]

N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada, T. Sasaki, Electrochem. Commun. 2007, 9, 1486.

[27]

S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park, T. Y. Kim, S.-W. Baek, J.-M. Lee, S. Doo, N. Machida, J. Power Sources 2014, 248, 943.

[28]

Y. Xiao, Y. Wang, S.-H. Bo, J. C. Kim, L. J. Miara, G. Ceder, Nat. Rev. Mater. 2020, 5, 105.

[29]

L. Peng, H. Ren, J. Zhang, S. Cheng, C. Yu, X. Miao, Z. Zhang, Z. He, M. Yu, L. Zhang, S. Cheng, J. Xie, Energy Storage Mater. 2021, 43, 53.

[30]

J. Auvergniot, A. Cassel, J.-B. Ledeuil, V. Viallet, V. Seznec, R. Dedryvère, Chem. Mater. 2017, 9, 3883.

[31]

Z. Zhang, Y. Huang, X. Gao, Z. Xu, X. Wang, ACS Appl. Energy Mater. 2020, 3, 6205.

[32]

T. Matsuyama, A. Hayashi, T. Ozaki, S. Mori, M. Tatsumisago, J. Mater. Chem. A 2015, 3, 14142.

[33]

D. Y. Oh, Y. E. Choi, D. H. Kim, Y.-G. Lee, B.-S. Kim, J. Park, H. Sohn, Y. S. Jung, J. Mater. Chem. A 2016, 4, 10329.

[34]

Q. Zhang, G. Peng, J. P. Mwizerwa, H. Wan, L. Cai, X. Xu, X. Yao, J. Mater. Chem. A 2018, 6, 12098.

[35]

Y. Yang, X.-J. Hong, C.-L. Song, G.-H. Li, Y.-X. Zheng, D.-D. Zhou, M. Zhang, Y.-P. Cai, H. Wang, J. Mater. Chem. A 2019, 7, 16323.

[36]

L. Xu, Y. Hu, H. Zhang, H. Jiang, C. Li, ACS Sustain. Chem. Eng. 2016, 4, 4251.

[37]

H. Li, Y. Ma, H. Zhang, T. Diemant, R. J. Behm, A. Varzi, S. Passerini, Small Methods 2020, 4, 2000637.

[38]

X. Xu, J. Liu, Z. Liu, J. Shen, R. Hu, J. Liu, L. Ouyang, L. Zhang, M. Zhu, ACS Nano 2017, 11, 9033.

[39]

H. Wan, G. Liu, Y. Li, W. Weng, J. P. Mwizerwa, Z. Tian, L. Chen, X. Yao, ACS Nano 2019, 13, 9551.

[40]

T. A. Yersak, C. Stoldt, S.-H. Lee, J. Electrochem. Soc. 2013, 160, A1009.

[41]

L. Fei, Q. Lin, B. Yuan, G. Chen, P. Xie, Y. Li, Y. Xu, S. Deng, S. Smirnov, H. Luo, ACS Appl. Mater. Inter. 2013, 5, 5330.

[42]

C. Zhu, Y. Wen, P. A. van Aken, J. Maier, Y. Yu, Adv. Funct. Mater. 2015, 25, 2335.

[43]

D. Cao, W. Kang, W. Wang, K. Sun, Y. Wang, P. Ma, D. Sun, Small 2020, 16, 1907641.

[44]

C. Yu, J. Hageman, S. Ganapathy, L. van Eijck, L. Zhang, K. R. Adair, X. Sun, M. Wagemaker, J. Mater. Chem. A 2019, 7, 10412.

[45]

L. Peng, C. Yu, Z. Zhang, H. Ren, J. Zhang, Z. He, M. Yu, L. Zhang, S. Cheng, J. Xie, Chem. Eng. J. 2022, 430, 132896.

[46]

M. A. Kraft, S. P. Culver, M. Calderon, F. Böcher, T. Krauskopf, A. Senyshyn, C. Dietrich, A. Zevalkink, J. Janek, W. G. Zeier, J. Am. Chem. Soc. 2017, 31, 10909.

[47]

C. Yu, F. Zhao, J. Luo, L. Zhang, X. Sun, Nano Energy 2021, 83, 105858.

[48]

H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiß, M. Schlosser, Angew. Chem. Int. Edit. 2008, 47, 755.

[49]

B.-H. Toby, J. Appl. Crystallogr. 2001, 34, 210.

[50]
L. Peng, C. Yu, Z. Zhang, R. Xu, M. Sun, L. Zhang, S. Cheng, J. Xie, Energy Environ. Mater. DOI: 10.1002/eem2.12308.
[51]

X. Xu, J. Feng, J. Liu, F. Lv, R. Hu, F. Fang, L. Yang, L. Ouyang, M. Zhu, Electrochim. Acta 2019, 312, 224.

[52]

L. Shi, D. Li, J. Yu, H. Liu, Y. Zhao, H. Xin, Y. Lin, C. Lin, C. Lia, C. Zhu, J. Mater. Chem. A 2018, 6, 7967.

[53]

F. Jiang, L. Zhang, W. Zhao, J. Zhou, P. Ge, L. Wang, Y. Yang, W. Sun, X. Chang, X. Ji, ACS Sustain. Chem. Eng. 2020, 8, 11783.

[54]

Q. Tang, Q. Jiang, T. Wu, T. Wu, Z. Ding, J. Wu, H. Yu, K. Huang, ACS Appl. Mater. Inter. 2020, 12, 52888.

[55]

T. Ates, M. Keller, J. Kulisch, T. Adermann, S. Passerini, Energy Storage Mater. 2019, 17, 204.

[56]

L. Dai, D. Tang, C. Shen, Y. Han, X. Wu, H. Wu, G. Diao, M. Chen, ChemNanoMat. 2019, 5, 1324.

[57]

Y.-J. Zhang, W. Chang, J. Qu, S.-M. Hao, Q.-Y. Ji, Z.-G. Jiang, Z.-Z. Yu, Chem. Eur. J. 2018, 24, 17339.

[58]

U. Ulissi, S. Ito, S. M. Hosseini, A. Varzi, Y. Aihara, S. Passerini, Adv. Energy Mater. 2018, 8, 1801462.

[59]

S.-B. Son, T. A. Yersak, D. M. Piper, S. C. Kim, C. S. Kang, J. S. Cho, S.-S. Suh, Y.-U. Kim, K. H. Oh, S.-H. Lee, Adv. Energy Mater. 2014, 4, 1300961.

[60]

S. Wang, M. Tang, Q. Zhang, B. Li, S. Ohno, F. Walther, R. Pan, X. Xu, C. Xin, W. Zhang, L. Li, Y. Shen, F. H. Richter, J. Janek, C.-W. Nan, Adv. Energy Mater. 2021, 11, 2101370.

[61]

X. Xu, F. Li, D. Zhang, Z. Liu, S. Zuo, Z. Zeng, J. Liu, Adv. Sci. 2022, 9, 2200247.

[62]

S. Yao, C. Zhang, R. Guo, A. Majeed, Y. He, Y. Wang, X. Shen, T. Li, S. Qin, ACS Sustain. Chem. Eng. 2020, 8, 13600.

[63]

J. Shen, X. Xu, J. Liu, Z. Wang, S. Zuo, Z. Liu, D. Zhang, J. Liu, M. Zhu, Adv. Energy Mater. 2021, 11, 2100673.

[64]

Z. Liu, J. Shen, S. Feng, Y. Huang, D. Wu, F. Li, Y. Zhu, M. Gu, Q. Liu, J. Liu, M. Zhu, Angew. Chem. Int. Ed. 2021, 60, 20960.

Energy & Environmental Materials
Cite this article:
Xi L, Li Y, Zhang D, et al. The Contact Interface Engineering of All-Sulfide-Based Solid State Batteries via Infiltrating Dissoluble Sulfide Electrolyte. Energy & Environmental Materials, 2023, 6(6). https://doi.org/10.1002/eem2.12461
Metrics & Citations  
Article History
Copyright
Return