PDF (1.6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Electrostatic Interaction-directed Construction of Hierarchical Nanostructured Carbon Composite with Dual Electrical Conductive Networks for Zinc-ion Hybrid Capacitors with Ultrastability

Changyu Leng1Zongbin Zhao1 ()Xuzhen Wang1Yuliya V. Fedoseeva2Lyubov G. Bulusheva2Alexander V. Okotrub2Jian Xiao1Jieshan Qiu3()
State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Abstract

Metal–organic framework (MOF)-derived carbon composites have been considered as the promising materials for energy storage. However, the construction of MOF-based composites with highly controllable mode via the liquid–liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase. Herein, we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates, including carbon nanotubes (CNTs), graphene oxide (GO), MXene, layered double hydroxides (LDHs), MOFs, and SiO2. The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity (Vmeso/Vmicro: 2.4), ultrahigh N content of 12.4 at.% and “dual electrical conductive networks.” The assembled aqueous zinc-ion hybrid capacitor (ZIC) with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g−1 at 0.5 A g−1, great rate performance of 98 F g−1 at 100 A g−1, and especially, an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%. This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.

Electronic Supplementary Material

Download File(s)
eem-7-1-e12484_ESM.pdf (2.3 MB)

References

[1]

J. Yin, W. Zhang, N. A. Alhebshi, N. Salah, H. N. Alshareef, Adv. Energy Mater. 2021, 11, 2100201.

[2]

H. Wang, W. Ye, Y. Yang, Y. Zhong, Y. Hu, Nano Energy 2021, 85, 105942.

[3]

H. Tang, J. Yao, Y. Zhu, Adv. Energy Mater. 2021, 11, 2003994.

[4]

L. Dong, W. Yang, W. Yang, Y. Li, W. Wu, G. Wang, J. Mater. Chem. A 2018, 7, 13810.

[5]

Z. Li, Y. An, S. Dong, C. Chen, L. Wu, Y. Sun, X. Zhang, Energy Storage Mater. 2020, 31, 252.

[6]

L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q. Yang, F. Kang, Energy Storage Mater. 2018, 13, 96.

[7]

H. Wang, M. Wang, Y. Tang, Energy Storage Mater. 2018, DOI: https://doi.org/10.1016/j.ensm.2017.12.022.

[8]

L. He, Y. Liu, C. Li, D. Yang, W. Wang, W. Yan, W. Zhou, Z. Wu, L. Wang, Q. Huang, Y. Zhu, Y. Chen, L. Fu, X. Hou, Y. Wu, ACS Appl. Energy Mater. 2019, 2, 5835.

[9]

D. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew. Chem. Int. Ed. 2008, 47, 373.

[10]

S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi, J. Zapien, J. Mater. Chem. A 2019, 7, 7784.

[11]

Y. Zheng, W. Zhao, D. Jia, Y. Liu, L. Cui, D. Wei, R. Zheng, J. Liu, Chem. Eng. J. 2020, 387, 124161.

[12]

X. Deng, J. Li, L. Ma, N. Zhao, J. Mater. Chem. A 2020, 8, 11617.

[13]

Q. Yang, Y. Guo, B. Yan, C. Wang, Z. Liu, Z. Huang, Y. Wang, Y. Li, H. Li, L. Song, J. Fan, C. Zhi, Adv. Mater. 2020, 32, 2001755.

[14]

T. Xiong, Y. Shen, W. S. V. Lee, J. Xue, Nano Mater. Sci. 2020, 2, 159.

[15]

Y. Zhu, X. Ye, H. Jiang, J. Xia, Z. Yue, L. Wang, Z. Wan, C. Jia, X. Yao, J. Power Sources 2020, 453, 227851.

[16]

L. Zhang, D. Wu, G. Wang, Y. Xu, H. Li, X. Yan, Chin. Chem. Lett. 2021, 32, 926.

[17]

Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, X. Sun, Energy Storage Mater. 2016, 2, 35.

[18]

Q. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5568.

[19]

J. Zhou, L. Jiang, C. Shu, L. Kong, I. Ahmad, Y. Zhou, W. Tang, X. Sun, Y. Wu, Energy Environ. Mater. 2021, 4, 569.

[20]

Y. Yan, X. Liu, J. Yan, C. Guan, J. Wang, Energy Environ. Mater. 2021, 4, 502.

[21]

S. Jiang, J. Ding, R. Wang, F. Chen, J. Sun, Y. Deng, X. Li, Rare Metals 2021, 40, 3520.

[22]

Y. An, T. Liu, C. Li, X. Zhang, T. Hu, X. Sun, K. Wang, C. Wang, Y. Ma, J. Mater. Chem. A 2021, 9, 15654.

[23]

Y. Li, P. Lu, P. Shang, L. Wu, X. Wang, Y. Dong, R. He, Z. Wu, J. Energy Chem. 2021, 56, 404.

[24]

J. Meng, X. Liu, C. Niu, Q. Pang, J. Li, F. Liu, Z. Liu, L. Mai, Chem. Soc. Rev. 2020, 49, 3142.

[25]

S. Yang, J. Choi, H. Chae, J. Cho, K. Nahm, C. Park, Chem. Mater. 1893, 2009, 21.

[26]

M. Jahan, Z. Liu, K. Loh, Adv. Funct. Mater. 2013, 23, 5363.

[27]

C. Petit, T. Bandosz, Adv. Mater. 2009, 21, 4753.

[28]

H. Zou, B. He, P. Kuang, J. Yu, K. Fan, ACS Appl. Mater. Interfaces 2018, 10, 22311.

[29]

H. Saini, N. Srinivasan, V. Sedajova, M. Majumder, D. Dubal, M. Otyepka, R. Zboril, N. Kurra, R. Fischer, K. Jayaramulu, ACS Nano 2021, 15, 18742.

[30]

S. Hermes, D. Zacher, A. Baunemann, C. Wöll, R. Fischer, Chem. Mater. 2007, 19, 2168.

[31]

H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A. Fakhari, M. Amini, Electrochim. Acta 2013, 88, 301.

[32]

Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, M. Wei, D. Evans, X. Duan, Adv. Mater. 2016, 28, 2337.

[33]

Y. Liu, N. Wang, J. Pan, F. Steinbach, J. Caro, J. Am. Chem. Soc. 2014, 136, 14353.

[34]

X. Yang, X. Jiang, Y. Huang, Z. Guo, L. Shao, ACS Appl. Mater. Interfaces 2017, 9, 5590.

[35]

M. Anbia, V. Hoseini, Chem. Eng. J. 2012, 191, 326.

[36]

C. Liu, Y. Bai, W. Li, F. Yang, G. Zhang, H. Pang, Angew. Chem. 2022, 134, e202116282.

[37]

H. Zhong, J. Wang, Y. Zhang, W. Xu, W. Xing, D. Xu, Y. Zhang, X. Zhang, Angew. Chem. Int. Ed. 2014, 53, 14235.

[38]

J. Wang, T. Zhao, Z. Yang, Y. Chen, Y. Liu, J. Wang, P. Zhai, W. Wu, ACS Appl. Mater. Interfaces 2019, 11, 38654.

[39]

Y. Fu, C. Yang, X. Yan, Chem-Eur J. 2013, 19, 13484.

[40]

R. Yuksel, O. Buyukcakir, W. Seong, R. S. Ruoff, Adv. Energy Mater. 2020, 10, 1904215.

[41]

P. A. Gerola, F. P. Costa, H. F. Quina, D. H. Fiedler, F. Nome, Curr. Opin. Colloid In. 2017, 32, 39.

[42]

A. Wu, Y. Gao, L. Zheng, Green Chem. 2019, 21, 4290.

[43]

J. Troyano, A. Sanchez, C. Avci, I. Imaza, D. Maspoch, Chem. Soc. Rev. 2019, 48, 5534.

[44]

C. Leng, Z. Zhao, J. Guo, R. Li, X. Wang, J. Xiao, Y. V. Fedoseeva, L. G. Bulusheva, J. Qiu, Chem. Commun. 2021, 57, 8778.

[45]

S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng, B. Liu, S. Yang, K. Zhang, W. Zhang, Adv. Energy Mater. 2019, 9, 1902915.

[46]

Q. Wang, S. Wang, X. Guo, L. Ruan, N. Wei, Y. Ma, J. Li, M. Wang, W. Li, W. Zeng, Adv. Electron. Mater. 2019, 5, 1900537.

[47]

H. Zhou, C. Liu, J. C. Wu, M. Liu, D. Zhang, H. Song, X. Zhang, H. Gao, J. Yang, D. Chen, J. Mater. Chem. A 2019, 7, 9708.

[48]

J. Yin, W. Zhang, W. Wang, N. A. Alhebshi, N. Salah, H. N. Alshareef, Adv. Energy Mater. 2020, 10, 2001705.

[49]

H. Zhang, Q. Liu, Y. Fang, C. Teng, X. Liu, P. Fang, Y. Tong, X. Lu, Adv. Mater. 2019, 31, 1904948.

[50]

Y. Shao, Z. Sun, Z. Tian, S. Li, G. Wu, M. Wang, X. Tong, F. Shen, Z. Xia, V. Tung, J. Sun, Y. Shao, Adv. Funct. Mater. 2021, 31, 2007843.

[51]

P. Yu, Y. Zeng, Y. Zeng, H. Dong, H. Hu, Y. Liu, M. Zheng, Y. Xiao, X. Lu, Y. Liang, Electrochim. Acta 2019, 327, 134999.

[52]

Z. Li, D. Chen, Y. An, C. Chen, L. Wu, Z. Chen, Y. Sun, X. Zhang, Energy Storage Mater. 2020, 28, 307.

[53]

Y. Lu, Z. Li, Z. Bai, H. Mi, C. Ji, H. Pang, C. Yu, J. Qiu, Nano Energy 2019, 66, 104132.

[54]

P. Liu, Y. Gao, Y. Tan, W. Liu, Y. Huang, J. Yan, K. Liu, Nano Res. 2019, 12, 2835.

[55]

Z. Huang, Y. Song, Y. Dong, Z. Sun, X. Sun, X. Liu, ACS Nano 2018, 12, 3557.

[56]

D. Becke, J. Chem. Phys. 1993, 98, 5648.

[57]

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.

[58]

S. Grimme, J. Antony, S. Ehrlich, J. Chem. Phys. 2010, 132, 154104.

[59]

L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670.

[60]

A. D. Bochevarov, E. Harder, T. F. Hughes, J. R. Greenwood, D. A. Braden, D. M. Philipp, D. Rinaldo, M. D. Halls, J. Zhang, R. A. Friesner, Int. J. Quantum Chem. 2013, 113, 2110.

Energy & Environmental Materials
Article number: e12484
Cite this article:
Leng C, Zhao Z, Wang X, et al. Electrostatic Interaction-directed Construction of Hierarchical Nanostructured Carbon Composite with Dual Electrical Conductive Networks for Zinc-ion Hybrid Capacitors with Ultrastability. Energy & Environmental Materials, 2024, 7(1): e12484. https://doi.org/10.1002/eem2.12484
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return