PDF (5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Low-Cost and Biodegradable Thermoelectric Devices Based on van der Waals Semiconductors on Paper Substrates

Gulsum Ersu1Carmen Munuera1Federico J. Mompean1Daniel Vaquero2Jorge Quereda3João Elias F. S. Rodrigues1Jose A. Alonso1Eduardo Flores4Jose R. Ares5Isabel J. Ferrer5,6Abdullah M. Al-Enizi7Ayman Nafady7Sruthi Kuriakose1Joshua O. Island8()Andres Castellanos-Gomez1 ()
Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
Nanotechnology Group, USAL–Nanolab, Univesidad de Salamanca, Salamanca Junta de Castilla y Leon 37007, Spain
GISC, Departamento de F´ ısica de Materiales, Universidad Complutense de Madrid, Madrid E-28040, Spain
Departamento de Física Aplicada, Centro de Investigación y Estudios Avanzados, Mérida 97310, Mexico
MIRE Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, Madrid E-28049, Spain
Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid E-28049, Spain
Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas NV 89154, USA
Show Author Information

Abstract

We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates. The devices are based on thin films of WS2, Te, and BP (P-type semiconductors) and TiS3 and TiS2 (N-type semiconductors), deposited by simply rubbing powder of these materials against paper. The thermoelectric properties of these semiconducting films revealed maximum Seebeck coefficients of (+1.32 ± 0.27) mV K−1 and (−0.82 ± 0.15) mV K−1 for WS2 and TiS3, respectively. Additionally, Peltier elements were fabricated by interconnecting the P- and N-type films with graphite electrodes. A thermopower value up to 6.11 mV K−1 was obtained when the Peltier element were constructed with three junctions. The findings of this work show proof-of-concept devices to illustrate the potential application of semiconducting van der Waals materials in future thermoelectric power generation as well as temperature sensing for low-cost disposable electronic devices.

Electronic Supplementary Material

Download File(s)
eem-7-1-e12488_ESM.docx (3.8 MB)

References

[1]

S. R. Forrest, Nature 2004, 428, 911.

[2]

A. Nathan, A. Ahnood, M. T. Cole, Sungsik Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. Chu, A. J. Flewitt, A. C. Ferrari, M. J. Kelly, J. Robertson, G. A. J. Amaratunga, W. I. Milne, Proc. IEEE 2012, 100, 1486.

[3]

V. Selamneni, A. BS, P. Sahatiya, Med. DEVICES Sens. 2020, 3, e10099.

[4]

A. Quddious, S. Yang, M. Khan, F. Tahir, A. Shamim, K. Salama, H. Cheema, Sensors 2016, 16, 2073.

[5]

V. Forti, C. P. Baldé, R. Kuehr, G. Bel, Global E-waste Monitor 2020, 2020.

[6]

S. Nandy, S. Goswami, A. Marques, D. Gaspar, P. Grey, I. Cunha, D. Nunes, A. Pimentel, R. Igreja, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, Adv. Mater. Technol. 2021, 6, 2000994.

[7]

A. Russo, B. Y. Ahn, J. J. Adams, E. B. Duoss, J. T. Bernhard, J. A. Lewis, Adv. Mater. 2011, 23, 3426.

[8]

F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Appl. Phys. Lett. 2004, 84, 2673.

[9]

D. Tobjörk, R. Österbacka, Adv. Mater. 2011, 23, 1935.

[10]

Y. Xu, G. Zhao, L. Zhu, Q. Fei, Z. Zhang, Z. Chen, F. An, Y. Chen, Y. Ling, P. Guo, S. Ding, G. Huang, P. Y. Chen, Q. Cao, Z. Yan, Proc. Natl. Acad. Sci. USA 2020, 117, 18292.

[11]

J. K. F. Lee, J. Paediatr. Child Health 2008, 44, 62.

[12]

D. W. Eyre, A. E. Sheppard, H. Madder, I. Moir, R. Moroney, T. P. Quan, D. Griffiths, S. George, L. Butcher, M. Morgan, R. Newnham, M. Sunderland, T. Clarke, D. Foster, P. Hoffman, A. M. Borman, E. M. Johnson, G. Moore, C. S. Brown, A. S. Walker, T. E. A. Peto, D. W. Crook, K. J. M. Jeffery, N. Engl. J. Med. 2018, 379, 1322.

[13]

J. J. Weems, Infect. Control Hosp. Epidemiol. 1993, 14, 583.

[14]

T.-K. Kang, Appl. Phys. Lett. 2014, 104, 073117.

[15]

T. Dinh, H. P. Phan, D. V. Dao, P. Woodfield, A. Qamar, N. T. Nguyen, J. Mater. Chem. C 2015, 3, 8776.

[16]

D.-J. Lee, D. Y. Kim, IEEE Access 2019, 7, 77200.

[17]

C.-W. Lin, Z. Zhao, J. Kim, J. Huang, Sci. Rep. 2014, 4, 3812.

[18]

N. Kurra, D. Dutta, G. U. Kulkarni, Phys. Chem. Chem. Phys. 2013, 15, 8367.

[19]

H. Liu, H. Jiang, D. Zhang, Z. Li, H. Zhou, F. Du, ACS Sustain Chem. Eng. 2017, 5, 10538.

[20]

P. M. Pataniya, V. Patel, C. K. Sumesh, Nanotechnology 2021, 32, 315709.

[21]

X. Liao, Z. Zhang, Q. Liao, Q. Liang, Y. Ou, M. Xu, M. Li, G. Zhang, Y. Zhang, Nanoscale 2016, 8, 13025.

[22]

D. McManus, A. Dal Santo, P. B. Selvasundaram, R. Krupke, A. LiBassi, C. Casiraghi, Flex. Print. Electron. 2018, 3, 034005.

[23]

B. Saha, S. Baek, J. Lee, ACS Appl. Mater. Interfaces 2017, 9, 4658.

[24]

P. Pataniya, C. K. Zankat, M. Tannarana, C. K. Sumesh, S. Narayan, G. K. Solanki, K. D. Patel, V. M. Pathak, P. K. Jha, ACS Appl. Nano Mater. 2019, 2, 2758.

[25]

K. A. Mirica, J. G. Weis, J. M. Schnorr, B. Esser, T. M. Swager, Angew. Chem. Int. Ed. 2012, 51, 10740.

[26]

Y. Li, Y. A. Samad, T. Taha, G. Cai, S. Y. Fu, K. Liao, ACS Sustain. Chem. Eng. 2016, 4, 4288.

[27]

H. Tai, Z. Duan, Y. Wang, S. Wang, Y. Jiang, ACS Appl. Mater. Interfaces 2020, 12, 31037.

[28]

X. Zhang, Z. Lin, B. Chen, S. Sharma, C. P. Wong, W. Zhang, Y. Deng, J. Mater. Chem. A 2013, 1, 5835.

[29]

M. P. Down, C. W. Foster, X. Ji, C. E. Banks, RSC Adv. 2016, 6, 81130.

[30]

G. Zheng, L. Hu, H. Wu, X. Xie, Y. Cui, Energy Environ. Sci. 2011, 4, 3368.

[31]

A. Fraiwan, S. Choi, Phys. Chem. Chem. Phys. 2014, 16, 26288.

[32]

H. Lee, S. Choi, Nano Energy 2015, 15, 549.

[33]

F. Brunetti, A. Operamolla, S. Castro-Hermosa, G. Lucarelli, V. Manca, G. M. Farinola, T. M. Brown, Adv. Funct. Mater. 2019, 29, 1806798.

[34]

M. Rawat, E. Jayaraman, S. Balasubramanian, S. S. K. Iyer, Adv. Mater. Technol. 2019, 4, 1900184.

[35]

F. J. DiSalvo, Science 1999, 285, 703.

[36]

L. Habbe, J. Nurnus, Electron Cool. 2011, 17, 24.

[37]

Y. Du, K. Cai, S. Chen, H. Wang, S. Z. Shen, R. Donelson, T. Lin, Sci. Rep. 2015, 5, 6411.

[38]

V. V. Brus, M. Gluba, J. Rappich, F. Lang, P. D. Maryanchuk, N. H. Nickel, ACS Appl. Mater. Interfaces 2018, 10, 4737.

[39]

R. Mulla, D. R. Jones, C. W. Dunnill, Adv. Mater. Technol. 2020, 5, 2000227.

[40]

R. Mulla, D. R. Jones, C. W. Dunnill, Mater. Today Commun. 2021, 29, 102738.

[41]

A. L. Hsu, P. K. Herring, N. M. Gabor, S. Ha, Y. C. Shin, Y. Song, M. Chin, M. Dubey, A. P. Chandrakasan, J. Kong, P. Jarillo-Herrero, T. Palacios, Nano Lett. 2015, 15, 7211.

[42]

A. Mazaheri, M. Lee, H. S. J. van der Zant, R. Frisenda, A. Castellanos-Gomez, Nanoscale 2020, 12, 19068.

[43]

M. Lee, A. Mazaheri, H. S. J. van der Zant, R. Frisenda, A. Castellanos-Gomez, Nanoscale 2020, 12, 22091.

[44]

W. Zhang, Q. Zhao, C. Munuera, M. Lee, E. Flores, J. E. F. Rodrigues, J. R. Ares, C. Sanchez, J. Gainza, H. S. J. van der Zant, J. A. Alonso, I. J. Ferrer, T. Wang, R. Frisenda, A. Castellanos-Gomez, Appl. Mater. Today 2021, 23, 101012.

[45]
G. E. Yakovleva, A. I. Romanenko, A. S. Berdinsky, A. Y. Ledneva, V. A. Kuznetsov, M. K. Han, S. J. Kim, V. E. Fedorov, in 2016 39th Int. Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), IEEE, Opatija, Croatia 2016, DOI: https://doi.org/10.1109/MIPRO.2016.7522100.
[46]

N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, M. Ismail, Energy Rep. 2020, 6, 264.

[47]

P. R. N. Misse, D. Berthebaud, O. I. Lebedev, A. Maignan, E. Guilmeau, Materials 2015, 8, 2514.

[48]

I. J. Ferrer, J. R. Ares, J. M. Clamagirand, M. Barawi, C. Sánchez, Thin Solid Films 2013, 535, 398.

[49]

J. O. Island, G. A. Steele, H. S. J. van der Zant, A. Castellanos-Gomez, 2D Mater. 2015, 2, 011002.

[50]

P. Fan, Z. H. Zheng, Y. Z. Li, Q. Y. Lin, J. T. Luo, G. X. Liang, X. M. Cai, D. P. Zhang, F. Ye, Appl. Phys. Lett. 2015, 106, 073901.

[51]

E. Flores, J. R. Ares, I. J. Ferrer, C. Sánchez, Phys. Status Solidi RRL Rapid Res. Lett. 2016, 10, 802.

[52]

J. E. F. S. Rodrigues, J. Gainza, F. Serrano-Sánchez, C. López, O. J. Dura, N. Nemes, J. L. Martinez, Y. Huttel, F. Fauth, M. T. Fernández-Diaz, N. Biškup, J. A. Alonso, Inorg. Chem. 2020, 59, 14932.

Energy & Environmental Materials
Article number: e12488
Cite this article:
Ersu G, Munuera C, Mompean FJ, et al. Low-Cost and Biodegradable Thermoelectric Devices Based on van der Waals Semiconductors on Paper Substrates. Energy & Environmental Materials, 2024, 7(1): e12488. https://doi.org/10.1002/eem2.12488
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return