AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Porously Reduced 2-Dimensional Bi2O2CO3 Petals for Strain-Mediated Electrochemical CO2 Reduction to HCOOH

Won Seok Cho1Dae Myung Hong1Wan Jae Dong1Tae Hyung Lee2Chul Jong Yoo1Donghwa Lee1( )Ho Won Jang2 ( )Jong-Lam Lee1 ( )
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang Gyungbuk 37673, Korea
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
Show Author Information

Abstract

Here we introduce bismuth-based catalysts for the efficient electrochemical reduction of CO2 to formic acid (HCOOH), which are composed of petal-shaped Bi2O2CO3 (BOC) that spontaneously formed from Bi thin film in aqueous carbonate solution at room temperature. During the electrochemical reduction process, the BOC petals transform to reduced BOC (R-BOC) consisting of individual BOC and Bi domains. Lattice mismatch between both domains induces biaxial strain at the interfaces. Density functional theory calculations suggest that the tensile strain on the Bi domain stabilizes the *OCHO intermediate, reducing the thermodynamic barrier toward CO2 conversion to HCOOH. Together with the thermodynamic benefit and the unique nanoporous petal-shaped morphology, R-BOC petals have a superior Faradaic efficiency of 95.9% at −0.8 VRHE for the electrochemical conversion of CO2 to HCOOH. This work demonstrates that the spontaneously formed binary phases with desirable lattice strain can increase the activity of bismuth catalysts to the CO2 reduction reaction; such a strategy can be applicable in design of various electrocatalysts.

Electronic Supplementary Material

Download File(s)
eem-7-1-e12490_ESM.docx (2.6 MB)

References

[1]

Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, DOI: https://doi.org/10.1126/science.aad4998.

[2]

R. Francke, B. Schille, M. Roemelt, Chem. Rev. 2018, 118, 4631.

[3]

P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent, Nat. Catal. 2018, 1, 103.

[4]

H. Liu, Y. Zhu, J. Ma, Z. Zhang, W. Hu, Adv. Funct. Mater. 2020, 30, 1910534.

[5]

J. R. Eppinger, K.-W. Huang, ACS Energy Lett. 2017, 2, 188.

[6]

M. Todoroki, K. Hara, A. Kudo, T. Sakata, J. Electroanal. Chem. 1995, 394, 199.

[7]

J. S. Yoo, R. Christensen, T. Vegge, J. K. Nørskov, F. Studt, ChemSusChem 2016, 9, 358.

[8]

C. H. Lee, M. W. Kanan, ACS Catal. 2015, 5, 465.

[9]

Y. Wang, J. Liu, Y. Wang, A. M. Al-Enizi, G. Zheng, Small 2017, 13, 1701809.

[10]

W. J. Dong, C. J. Yoo, J.-L. Lee, ACS Appl. Mater. Interfaces 2017, 9, 43575.

[11]

S. Zhang, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2014, 136, 1734.

[12]

W. J. Dong, D. M. Hong, J. Y. Park, S. Kim, C. J. Yoo, J.-L. Lee, J. Electrochem. Soc. 2021, 168, 016514.

[13]

S. Kim, W. J. Dong, S. Gim, W. Sohn, J. Y. Park, C. J. Yoo, H. W. Jang, J.-L. Lee, Nano Energy 2017, 39, 44.

[14]

J. Y. Park, S. Kim, D. M. Hong, J. W. Lim, C. J. Yoo, W. J. Dong, J.-L. Lee, Electron. Mater. Lett. 2019, 15, 454.

[15]

H. Yang, N. Han, J. Deng, J. Wu, Y. Wang, Y. Hu, P. Ding, Y. Li, Y. Li, J. Lu, Adv. Energy Mater. 2018, 8, 1801536.

[16]

N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, Nat. Commun. 2018, DOI: https://doi.org/10.1038/s41467-018-03712-z.

[17]

M. F. Baruch, J. E. Pander Ⅲ, J. L. White, A. B. Bocarsly, ACS Catal. 2015, 5, 3148.

[18]

J. Li, J. Li, X. Liu, J. Chen, P. Tian, S. Dai, M. Zhu, Y.-F. Han, Appl. Catal. B 2021, 298, 120581.

[19]

J. E. Pander Ⅲ, M. F. Baruch, A. B. Bocarsly, ACS Catal. 2016, 6, 7824.

[20]

Y. Chen, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 1986.

[21]

Z. M. Detweiler, J. L. White, S. L. Bernasek, A. B. Bocarsly, Langmuir 2014, 30, 7593.

[22]

J. Albo, M. Perfecto-Irigaray, G. Beobide, A. Irabien, J. CO2 Util. 2019, 33, 157.

[23]

H. Rabiee, L. Ge, X. Zhang, S. Hu, M. Li, S. Smart, Z. Zhu, Z. Yuan, Appl. Catal. B 2021, 286, 119945.

[24]

Y. X. Duan, Y. T. Zhou, Z. Yu, D. X. Liu, Z. Wen, J. M. Yan, Q. Jiang, Angew. Chem. Int. Ed. 2021, 60, 8798.

[25]

F. Li, G. H. Gu, C. Choi, P. Kolla, S. Hong, T.-S. Wu, Y.-L. Soo, J. Masa, S. Mukerjee, Y. Jung, Appl. Catal. B 2020, 277, 119241.

[26]

D. Wu, G. Huo, W. Chen, X.-Z. Fu, J.-L. Luo, Appl. Catal. B 2020, 271, 118957.

[27]

P. F. Sui, C. Xu, M. N. Zhu, S. Liu, Q. Liu, J. L. Luo, Small 2021, 18, 2105682.

[28]

Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, Joule 2018, 2, 2551.

[29]

Q. Shao, P. Wang, X. Huang, Adv. Funct. Mater. 2019, 29, 1806419.

[30]

Y. Yang, M. Luo, W. Zhang, Y. Sun, X. Chen, S. Guo, Chem 2018, 4, 2054.

[31]

C. H. Kuo, L. K. Lamontagne, C. N. Brodsky, L. Y. Chou, J. Zhuang, B. T. Sneed, M. K. Sheehan, C. K. Tsung, ChemSusChem 2013, 6, 1993.

[32]

C.-J. Chang, S.-C. Lin, H.-C. Chen, J. Wang, K. J. Zheng, Y. Zhu, H. M. Chen, J. Am. Chem. Soc. 2020, 142, 12119.

[33]

R. P. Jansonius, L. M. Reid, C. N. Virca, C. P. Berlinguette, ACS Energy Lett. 2019, 4, 980.

[34]

Y. Xing, X. Kong, X. Guo, Y. Liu, Q. Li, Y. Zhang, Y. Sheng, X. Yang, Z. Geng, J. Zeng, Adv. Sci. 2020, 7, 1902989.

[35]

S. Yan, C. Peng, C. Yang, Y. Chen, J. Zhang, A. Guan, X. Lv, H. Wang, Z. Wang, T. K. Sham, Angew. Chem. 2021, 133, 25945.

[36]

H. Chen, L. Wu, C. Ren, Q. Luo, Z. Xie, X. Jiang, S. Zhu, Y. Xia, Y. Luo, J. Power Sources 2001, 95, 108.

[37]

Y. Lum, J. W. Ager, Angew. Chem. Int. Ed. 2018, 57, 551.

[38]

A. Eilert, F. Cavalca, F. S. Roberts, J. R. Osterwalder, C. Liu, M. Favaro, E. J. Crumlin, H. Ogasawara, D. Friebel, L. G. Pettersson, J. Phys. Chem. Lett. 2017, 8, 285.

[39]

F. Cavalca, R. Ferragut, S. Aghion, A. Eilert, O. Diaz-Morales, C. Liu, A. L. Koh, T. W. Hansen, L. G. Pettersson, A. Nilsson, J. Phys. Chem. C 2017, 121, 25003.

[40]

X. An, S. Li, X. Hao, X. Du, T. Yu, Z. Wang, X. Hao, A. Abudula, G. Guan, Sustain. Energy Fuels 2020, 4, 2831.

[41]

K. Fan, Y. Jia, Y. Ji, P. Kuang, B. Zhu, X. Liu, J. Yu, ACS Catal. 2019, 10, 358.

[42]

L. Chen, R. Huang, S.-F. Yin, S.-L. Luo, C.-T. Au, Chem. Eng. J. 2012, 193, 123.

[43]

R. Hu, X. Xiao, S. Tu, X. Zuo, J. Nan, Appl. Catal. B 2015, 163, 510.

[44]

C. J. Yoo, W. J. Dong, J. Y. Park, J. W. Lim, S. Kim, K. S. Choi, F. O. Odongo Ngome, S.-Y. Choi, J.-L. Lee, ACS Appl. Energy Mater. 2020, 3, 4466.

[45]

F. Zhou, H. Li, M. Fournier, D. R. MacFarlane, ChemSusChem 2017, 10, 1509.

[46]

C. W. Lee, N. H. Cho, K. T. Nam, Y. J. Hwang, B. K. Min, Nat. Commun. 2019, DOI: https://doi.org/10.1038/s41467-019-11903-5.

[47]

G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Chem. Soc. Rev. 2021, 50, 4993.

[48]

L. Ma, W. Hu, Q. Pan, L. Zou, Z. Zou, K. Wen, H. Yang, J. CO2 Util. 2019, 34, 108.

[49]

Z. Cao, D. Kim, D. Hong, Y. Yu, J. Xu, S. Lin, X. Wen, E. M. Nichols, K. Jeong, J. A. Reimer, J. Am. Chem. Soc. 2016, 138, 8120.

[50]

L. Zhang, Z. Wei, S. Thanneeru, M. Meng, M. Kruzyk, G. Ung, B. Liu, J. He, Angew. Chem. 2019, 131, 15981.

[51]

Y. T. Guntern, J. R. Pankhurst, J. Vávra, M. Mensi, V. Mantella, P. Schouwink, R. Buonsanti, Angew. Chem. 2019, 131, 12762.

[52]

F. Yang, A. O. Elnabawy, R. Schimmenti, P. Song, J. Wang, Z. Peng, S. Yao, R. Deng, S. Song, Y. Lin, Nat. Commun. 2020, DOI: https://doi.org/10.1038/s41467-020-14914-9.

[53]

Y. Zhang, D. Li, Y. Zhang, X. Zhou, S. Guo, L. Yang, J. Mater. Chem. A 2014, 2, 8273.

[54]

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[55]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[56]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[57]

F. Han, Probl. Solid State Phys. Solut. 2011, 50, 391.

[58]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[59]

F. Wang, Z. Zhao, K. Zhang, F. Dong, Y. Zhou, CrystEngComm 2015, 17, 6098.

Energy & Environmental Materials
Article number: e12490
Cite this article:
Cho WS, Hong DM, Dong WJ, et al. Porously Reduced 2-Dimensional Bi2O2CO3 Petals for Strain-Mediated Electrochemical CO2 Reduction to HCOOH. Energy & Environmental Materials, 2024, 7(1): e12490. https://doi.org/10.1002/eem2.12490

35

Views

0

Downloads

12

Crossref

18

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 07 June 2022
Revised: 07 July 2022
Published: 22 July 2022
© 2022 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return