Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Here we introduce bismuth-based catalysts for the efficient electrochemical reduction of CO2 to formic acid (HCOOH), which are composed of petal-shaped Bi2O2CO3 (BOC) that spontaneously formed from Bi thin film in aqueous carbonate solution at room temperature. During the electrochemical reduction process, the BOC petals transform to reduced BOC (R-BOC) consisting of individual BOC and Bi domains. Lattice mismatch between both domains induces biaxial strain at the interfaces. Density functional theory calculations suggest that the tensile strain on the Bi domain stabilizes the *OCHO intermediate, reducing the thermodynamic barrier toward CO2 conversion to HCOOH. Together with the thermodynamic benefit and the unique nanoporous petal-shaped morphology, R-BOC petals have a superior Faradaic efficiency of 95.9% at −0.8 VRHE for the electrochemical conversion of CO2 to HCOOH. This work demonstrates that the spontaneously formed binary phases with desirable lattice strain can increase the activity of bismuth catalysts to the CO2 reduction reaction; such a strategy can be applicable in design of various electrocatalysts.
Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, DOI: https://doi.org/10.1126/science.aad4998.
R. Francke, B. Schille, M. Roemelt, Chem. Rev. 2018, 118, 4631.
P. De Luna, R. Quintero-Bermudez, C.-T. Dinh, M. B. Ross, O. S. Bushuyev, P. Todorović, T. Regier, S. O. Kelley, P. Yang, E. H. Sargent, Nat. Catal. 2018, 1, 103.
H. Liu, Y. Zhu, J. Ma, Z. Zhang, W. Hu, Adv. Funct. Mater. 2020, 30, 1910534.
J. R. Eppinger, K.-W. Huang, ACS Energy Lett. 2017, 2, 188.
M. Todoroki, K. Hara, A. Kudo, T. Sakata, J. Electroanal. Chem. 1995, 394, 199.
J. S. Yoo, R. Christensen, T. Vegge, J. K. Nørskov, F. Studt, ChemSusChem 2016, 9, 358.
C. H. Lee, M. W. Kanan, ACS Catal. 2015, 5, 465.
Y. Wang, J. Liu, Y. Wang, A. M. Al-Enizi, G. Zheng, Small 2017, 13, 1701809.
W. J. Dong, C. J. Yoo, J.-L. Lee, ACS Appl. Mater. Interfaces 2017, 9, 43575.
S. Zhang, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2014, 136, 1734.
W. J. Dong, D. M. Hong, J. Y. Park, S. Kim, C. J. Yoo, J.-L. Lee, J. Electrochem. Soc. 2021, 168, 016514.
S. Kim, W. J. Dong, S. Gim, W. Sohn, J. Y. Park, C. J. Yoo, H. W. Jang, J.-L. Lee, Nano Energy 2017, 39, 44.
J. Y. Park, S. Kim, D. M. Hong, J. W. Lim, C. J. Yoo, W. J. Dong, J.-L. Lee, Electron. Mater. Lett. 2019, 15, 454.
H. Yang, N. Han, J. Deng, J. Wu, Y. Wang, Y. Hu, P. Ding, Y. Li, Y. Li, J. Lu, Adv. Energy Mater. 2018, 8, 1801536.
N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, Nat. Commun. 2018, DOI: https://doi.org/10.1038/s41467-018-03712-z.
M. F. Baruch, J. E. Pander Ⅲ, J. L. White, A. B. Bocarsly, ACS Catal. 2015, 5, 3148.
J. Li, J. Li, X. Liu, J. Chen, P. Tian, S. Dai, M. Zhu, Y.-F. Han, Appl. Catal. B 2021, 298, 120581.
J. E. Pander Ⅲ, M. F. Baruch, A. B. Bocarsly, ACS Catal. 2016, 6, 7824.
Y. Chen, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 1986.
Z. M. Detweiler, J. L. White, S. L. Bernasek, A. B. Bocarsly, Langmuir 2014, 30, 7593.
J. Albo, M. Perfecto-Irigaray, G. Beobide, A. Irabien, J. CO2 Util. 2019, 33, 157.
H. Rabiee, L. Ge, X. Zhang, S. Hu, M. Li, S. Smart, Z. Zhu, Z. Yuan, Appl. Catal. B 2021, 286, 119945.
Y. X. Duan, Y. T. Zhou, Z. Yu, D. X. Liu, Z. Wen, J. M. Yan, Q. Jiang, Angew. Chem. Int. Ed. 2021, 60, 8798.
F. Li, G. H. Gu, C. Choi, P. Kolla, S. Hong, T.-S. Wu, Y.-L. Soo, J. Masa, S. Mukerjee, Y. Jung, Appl. Catal. B 2020, 277, 119241.
D. Wu, G. Huo, W. Chen, X.-Z. Fu, J.-L. Luo, Appl. Catal. B 2020, 271, 118957.
P. F. Sui, C. Xu, M. N. Zhu, S. Liu, Q. Liu, J. L. Luo, Small 2021, 18, 2105682.
Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, Joule 2018, 2, 2551.
Q. Shao, P. Wang, X. Huang, Adv. Funct. Mater. 2019, 29, 1806419.
Y. Yang, M. Luo, W. Zhang, Y. Sun, X. Chen, S. Guo, Chem 2018, 4, 2054.
C. H. Kuo, L. K. Lamontagne, C. N. Brodsky, L. Y. Chou, J. Zhuang, B. T. Sneed, M. K. Sheehan, C. K. Tsung, ChemSusChem 2013, 6, 1993.
C.-J. Chang, S.-C. Lin, H.-C. Chen, J. Wang, K. J. Zheng, Y. Zhu, H. M. Chen, J. Am. Chem. Soc. 2020, 142, 12119.
R. P. Jansonius, L. M. Reid, C. N. Virca, C. P. Berlinguette, ACS Energy Lett. 2019, 4, 980.
Y. Xing, X. Kong, X. Guo, Y. Liu, Q. Li, Y. Zhang, Y. Sheng, X. Yang, Z. Geng, J. Zeng, Adv. Sci. 2020, 7, 1902989.
S. Yan, C. Peng, C. Yang, Y. Chen, J. Zhang, A. Guan, X. Lv, H. Wang, Z. Wang, T. K. Sham, Angew. Chem. 2021, 133, 25945.
H. Chen, L. Wu, C. Ren, Q. Luo, Z. Xie, X. Jiang, S. Zhu, Y. Xia, Y. Luo, J. Power Sources 2001, 95, 108.
Y. Lum, J. W. Ager, Angew. Chem. Int. Ed. 2018, 57, 551.
A. Eilert, F. Cavalca, F. S. Roberts, J. R. Osterwalder, C. Liu, M. Favaro, E. J. Crumlin, H. Ogasawara, D. Friebel, L. G. Pettersson, J. Phys. Chem. Lett. 2017, 8, 285.
F. Cavalca, R. Ferragut, S. Aghion, A. Eilert, O. Diaz-Morales, C. Liu, A. L. Koh, T. W. Hansen, L. G. Pettersson, A. Nilsson, J. Phys. Chem. C 2017, 121, 25003.
X. An, S. Li, X. Hao, X. Du, T. Yu, Z. Wang, X. Hao, A. Abudula, G. Guan, Sustain. Energy Fuels 2020, 4, 2831.
K. Fan, Y. Jia, Y. Ji, P. Kuang, B. Zhu, X. Liu, J. Yu, ACS Catal. 2019, 10, 358.
L. Chen, R. Huang, S.-F. Yin, S.-L. Luo, C.-T. Au, Chem. Eng. J. 2012, 193, 123.
R. Hu, X. Xiao, S. Tu, X. Zuo, J. Nan, Appl. Catal. B 2015, 163, 510.
C. J. Yoo, W. J. Dong, J. Y. Park, J. W. Lim, S. Kim, K. S. Choi, F. O. Odongo Ngome, S.-Y. Choi, J.-L. Lee, ACS Appl. Energy Mater. 2020, 3, 4466.
F. Zhou, H. Li, M. Fournier, D. R. MacFarlane, ChemSusChem 2017, 10, 1509.
C. W. Lee, N. H. Cho, K. T. Nam, Y. J. Hwang, B. K. Min, Nat. Commun. 2019, DOI: https://doi.org/10.1038/s41467-019-11903-5.
G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Chem. Soc. Rev. 2021, 50, 4993.
L. Ma, W. Hu, Q. Pan, L. Zou, Z. Zou, K. Wen, H. Yang, J. CO2 Util. 2019, 34, 108.
Z. Cao, D. Kim, D. Hong, Y. Yu, J. Xu, S. Lin, X. Wen, E. M. Nichols, K. Jeong, J. A. Reimer, J. Am. Chem. Soc. 2016, 138, 8120.
L. Zhang, Z. Wei, S. Thanneeru, M. Meng, M. Kruzyk, G. Ung, B. Liu, J. He, Angew. Chem. 2019, 131, 15981.
Y. T. Guntern, J. R. Pankhurst, J. Vávra, M. Mensi, V. Mantella, P. Schouwink, R. Buonsanti, Angew. Chem. 2019, 131, 12762.
F. Yang, A. O. Elnabawy, R. Schimmenti, P. Song, J. Wang, Z. Peng, S. Yao, R. Deng, S. Song, Y. Lin, Nat. Commun. 2020, DOI: https://doi.org/10.1038/s41467-020-14914-9.
Y. Zhang, D. Li, Y. Zhang, X. Zhou, S. Guo, L. Yang, J. Mater. Chem. A 2014, 2, 8273.
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.
G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
F. Han, Probl. Solid State Phys. Solut. 2011, 50, 391.
G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
F. Wang, Z. Zhao, K. Zhang, F. Dong, Y. Zhou, CrystEngComm 2015, 17, 6098.
35
Views
0
Downloads
12
Crossref
18
Web of Science
12
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.