PDF (3.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Ultrathin NiO/Ni3S2 Heterostructure as Electrocatalyst for Accelerated Polysulfide Conversion in Lithium–Sulfur Batteries

Chunqiao Jin1Pengbo Zhai3Jianli Tang1Liuxiang Huo1Qianqian He3Yan Ye1Lingxi Qiu1Kai Jiang1Liyan Shang1Yawei Li1Yongji Gong3()Zhigao Hu1,2 ()Junhao Chu1,2
Department of Materials, School of Physics and Electronic Science, Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), East China Normal University, Shanghai 200241, China
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan Shanxi 030006, China
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Show Author Information

Abstract

The practical application of Lithium–Sulfur batteries largely depends on highly efficient utilization and conversion of sulfur under the realistic condition of high-sulfur content and low electrolyte/sulfur ratio. Rational design of heterostructure electrocatalysts with abundant active sites and strong interfacial electronic interactions is a promising but still challenging strategy for preventing shuttling of polysulfides in lithium–sulfur batteries. Herein, ultrathin nonlayered NiO/Ni3S2 heterostructure nanosheets are developed through topochemical transformation of layered Ni(OH)2 templates to improve the utilization of sulfur and facilitate stable cycling of batteries. As a multifunction catalyst, NiO/Ni3S2 not only enhances the adsorption of polysulfides and shorten the transport path of Li ions and electrons but also promotes the Li2S formation and transformation, which are verified by both in-situ Raman spectroscopy and electrochemical investigations. Thus, the cell with NiO/Ni3S2 as electrocatalyst delivers an area capacity of 4.8 mAh cm−2 under the high sulfur loading (6 mg cm−2) and low electrolyte/sulfur ratio (4.3 μL mg−1). The strategy can be extended to 2D Ni foil, demonstrating its prospects in the construction of electrodes with high gravimetric/volumetric energy densities. The designed electrocatalyst of ultrathin nonlayered heterostructure will shed light on achieving high energy density lithium–sulfur batteries.

Electronic Supplementary Material

Download File(s)
eem-6-6-e12491_ESM.docx (60.6 MB)

References

[1]

D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen, R. Cui, Y. Shen, G. Li, R. Feng, S. Zhang, G. Jiang, L. Chen, A. Yu, X. Wang, Nat. Commun. 2021, 12, 186.

[2]

Q. Pang, X. Liang, C. Y. Kwok, L. F. Nazar, Nat. Energy 2016, 1, 16132.

[3]

T. Wang, Q. Zhang, J. Zhong, M. Chen, H. Deng, J. Cao, L. Wang, L. Peng, J. Zhu, B. Lu, Adv. Energy Mater. 2021, 11, 2100448.

[4]

J.-H. Zuo, Y.-J. Gong, Tungsten 2020, 2, 134.

[5]

B. Liu, J. F. Torres, M. Taheri, P. Xiong, T. Lu, J. Zhu, Y. Liu, G. Yu, A. Tricoli, Adv. Energy Mater. 2022, 12, 2103444.

[6]

D. Luo, C. Li, Y. Zhang, Q. Ma, C. Ma, Y. Nie, M. Li, X. Weng, R. Huang, Y. Zhao, L. Shui, X. Wang, Z. Chen, Adv. Mater. 2022, 34, 2105541.

[7]

L. Luo, X. Qin, J. Wu, G. Liang, Q. Li, M. Liu, F. Kang, G. Chen, B. Li, J. Mater. Chem. A 2018, 6, 8612.

[8]

D. Gueon, T. Kim, J. Lee, J. H. Moon, Nano Energy 2022, 95, 106980.

[9]

X. Liao, Z. Li, Q. He, L. Xia, Y. Li, S. Zhu, M. Wang, H. Wang, X. Xu, L. Mai, Y. Zhao, ACS Appl. Mater. Interfaces 2020, 12, 9181.

[10]

J. He, A. Bhargav, H. Yaghoobnejad Asl, Y. Chen, A. Manthiram, Adv. Energy Mater. 2020, 10, 2001017.

[11]

W. Xue, Z. Shi, L. Suo, C. Wang, Z. Wang, H. Wang, K. P. So, A. Maurano, D. Yu, Y. Chen, L. Qie, Z. Zhu, G. Xu, J. Kong, J. Li, Nat. Energy 2019, 4, 374.

[12]

F. Liu, N. Wang, C. Shi, J. Sha, L. Ma, E. Liu, N. Zhao, Chem. Eng. J. 2022, 431, 133923.

[13]

S. Wang, H. Chen, J. Liao, Q. Sun, F. Zhao, J. Luo, X. Lin, X. Niu, M. Wu, R. Li, X. Sun, ACS Energy Lett. 2019, 4, 755.

[14]

D. Lei, W. Shang, X. Zhang, Y. Li, S. Qiao, Y. Zhong, X. Deng, X. Shi, Q. Zhang, C. Hao, X. Song, F. Zhang, ACS Nano 2021, 15, 20478.

[15]

M. Wang, L. Fan, D. Tian, X. Wu, Y. Qiu, C. Zhao, B. Guan, Y. Wang, N. Zhang, K. Sun, ACS Energy Lett. 2018, 3, 1627.

[16]

B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou, W. Lv, Y.-B. He, Y. Wan, F. Kang, Q.-H. Yang, Adv. Energy Mater. 2020, 10, 2000091.

[17]

W. Yang, Y. Wei, Q. Chen, S. Qin, J. Zuo, S. Tan, P. Zhai, S. Cui, H. Wang, C. Jin, J. Xiao, W. Liu, J. Shang, Y. Gong, J. Mater. Chem. A 2020, 8, 15816.

[18]

Y. Song, W. Zhao, L. Kong, L. Zhang, X. Zhu, Y. Shao, F. Ding, Q. Zhang, J. Sun, Z. Liu, Energy Environ. Sci. 2018, 11, 2620.

[19]

Z. Li, P. Li, X. Meng, Z. Lin, R. Wang, Adv. Mater. 2021, 33, 2102338.

[20]

R. Chu, T. T. Nguyen, Y. Bai, N. H. Kim, J. H. Lee, Adv. Energy Mater. 2022, 12, 2102805.

[21]

C. Cai, Y. Ma, J. Jeon, F. Huang, F. Jia, S. Lai, Z. Xu, C. Wu, R. Zhao, Y. Hao, Y. Chen, S. Lee, M. Wang, Adv. Mater. 2017, 29, 1606180.

[22]

M. Wang, L. Fan, X. Sun, B. Guan, B. Jiang, X. Wu, D. Tian, K. Sun, Y. Qiu, X. Yin, Y. Zhang, N. Zhang, ACS Energy Lett. 2020, 5, 3041.

[23]

B. Yu, A. Huang, K. Srinivas, X. Zhang, F. Ma, X. Wang, D. Chen, B. Wang, W. Zhang, Z. Wang, J. He, Y. Chen, ACS Nano 2021, 15, 13279.

[24]

X. Li, Y. Zhang, S. Wang, Y. Liu, Y. Ding, G. He, X. Jiang, W. Xiao, G. Yu, Nano Lett. 2020, 20, 6922.

[25]

Y. Fu, Z. Wu, Y. Yuan, P. Chen, L. Yu, L. Yuan, Q. Han, Y. Lan, W. Bai, E. Kan, C. Huang, X. Ouyang, X. Wang, J. Zhu, J. Lu, Nat. Commun. 2020, 11, 845.

[26]

C. Jin, P. Zhai, Y. Wei, Q. Chen, X. Wang, W. Yang, J. Xiao, Q. He, Q. Liu, Y. Gong, Small 2021, 17, 2102097.

[27]

X. Du, Q. Wang, X. Zhang, New J. Chem. 2018, 42, 18201.

[28]

Z. Yan, C. Guo, F. Yang, C. Zhang, Y. Mao, S. Cui, Y. Wei, L. Hou, L. Xu, Electrochim. Acta 2017, 251, 235.

[29]

R. Li, P. Kuang, L. Wang, H. Tang, J. Yu, Chem. Eng. J. 2022, 431, 134137.

[30]

S.-Y. Kim, C. V. V. M. Gopi, A. E. Reddy, H.-J. Kim, New J. Chem. 2018, 42, 5309.

[31]

W. Zhou, X.-J. Wu, X. Cao, X. Huang, C. Tan, J. Tian, H. Liu, J. Wang, H. Zhang, Energy Environ. Sci. 2013, 6, 2921.

[32]

Y. Lin, G. Chen, H. Wan, F. Chen, X. Liu, R. Ma, Small 2019, 15, 1900348.

[33]

H. B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H.-Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H. M. Chen, C. M. Li, T. Zhang, B. Liu, Nat. Energy 2018, 3, 140.

[34]

J. Kang, X. Qiu, Q. Hu, J. Zhong, X. Gao, R. Huang, C. Wan, L.-M. Liu, X. Duan, L. Guo, Nat. Catal. 2021, 4, 1050.

[35]

J. Ding, Y. Ji, Y. Li, G. Hong, Nano Lett. 2021, 21, 9381.

[36]

W. He, L. Han, Q. Hao, X. Zheng, Y. Li, J. Zhang, C. Liu, H. Liu, H. L. Xin, ACS Energy Lett. 2019, 4, 2905.

[37]

L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen, D. Zhu, D. Baumann, H. Liu, C. S. Allen, X. Xu, A. I. Kirkland, I. Shakir, Z. Almutairi, S. Tolbert, B. Dunn, Y. Huang, P. Sautet, X. Duan, Nat. Catal. 2020, 3, 762.

[38]

J. Li, C. Chen, Y. Chen, Z. Li, W. Xie, X. Zhang, M. Shao, M. Wei, Adv. Energy Mater. 2019, 9, 1901935.

[39]

M. Hagen, P. Schiffels, M. Hammer, S. Dörfler, J. Tübke, M. J. Hoffmann, H. Althues, S. Kaskel, J. Electrochem. Soc. 2013, 160, A1205.

[40]

J. Wang, W. Qiu, G. Li, J. Liu, D. Luo, Y. Zhang, Y. Zhao, G. Zhou, L. Shui, X. Wang, Z. Chen, Energy Storage Mater. 2022, 46, 269.

[41]

Z. Du, Y. Guo, H. Wang, J. Gu, Y. Zhang, Z. Cheng, B. Li, S. Li, S. Yang, ACS Nano 2021, 15, 19275.

[42]

W.-G. Lim, C. Jo, A. Cho, J. Hwang, S. Kim, J. W. Han, J. Lee, Adv. Mater. 2019, 31, 1806547.

[43]

H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang, Q. Yao, G. W. Zheng, J. Y. Lee, Energy Environ. Sci. 2017, 10, 1476.

[44]

X. Sun, D. Tian, X. Song, B. Jiang, C. Zhao, Y. Zhang, L. Yang, L. Fan, X. Yin, N. Zhang, Nano Energy 2022, 95, 106979.

[45]

X. Chen, H.-J. Peng, R. Zhang, T.-Z. Hou, J.-Q. Huang, B. Li, Q. Zhang, ACS Energy Lett. 2017, 2, 795.

[46]

T. Sun, X. Zhao, B. Li, H. Shu, L. Luo, W. Xia, M. Chen, P. Zeng, X. Yang, P. Gao, Y. Pei, X. Wang, Adv. Funct. Mater. 2021, 31, 2101285.

[47]

G. Zhou, S. Zhao, T. Wang, S.-Z. Yang, B. Johannessen, H. Chen, C. Liu, Y. Ye, Y. Wu, Y. Peng, C. Liu, S. P. Jiang, Q. Zhang, Y. Cui, Nano Lett. 2020, 20, 1252.

[48]

D. Tian, X. Song, Y. Qiu, X. Sun, B. Jiang, C. Zhao, Y. Zhang, X. Xu, L. Fan, N. Zhang, Energy Environ. Mater. 2021. DOI: 10.1002/eem2.12236.

[49]

Z. Du, X. Chen, W. Hu, C. Chuang, S. Xie, A. Hu, W. Yan, X. Kong, X. Wu, H. Ji, L.-J. Wan, J. Am. Chem. Soc. 2019, 141, 3977.

[50]

J. Ni, M. Sun, L. Li, Adv. Mater. 2019, 31, 1902603.

[51]

Y. You, Y. Ye, M. Wei, W. Sun, Q. Tang, J. Zhang, X. Chen, H. Li, J. Xu, Chem. Eng. J. 2019, 355, 671.

Energy & Environmental Materials
Cite this article:
Jin C, Zhai P, Tang J, et al. Ultrathin NiO/Ni3S2 Heterostructure as Electrocatalyst for Accelerated Polysulfide Conversion in Lithium–Sulfur Batteries. Energy & Environmental Materials, 2023, 6(6). https://doi.org/10.1002/eem2.12491
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return