PDF (1.1 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Solvent-Free Manufacturing of Lithium-Ion Battery Electrodes via Cold Plasma

Zhiming Liang1Tianyi Li2Holden Chi3Joseph Ziegelbauer3Kai Sun4Ming Wang5Wei Zhang1Tuo Liu6Yang-Tse Cheng5Zonghai Chen7Xiaohong Gayden3Chunmei Ban1 ()
Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder CO 80309, USA
Advanced Photon Source, Argonne National Laboratory, Lemont IL 60439, USA
Intecells Inc., Southfield MI 48084, USA
Department of Materials Science and Engineering, Michigan Center for Materials Characterization, University of Michigan, Ann Arbor MI 48109, USA
Department of Chemical and Materials Engineering, University of Kentucky, Lexington KY 40506, USA
Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439, USA
Show Author Information

Abstract

Slurry casting has been used to fabricate lithium-ion battery electrodes for decades, which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering. This work presents a new manufacturing method using a nonthermal plasma to create inter-particle binding without using any polymeric binding materials, enabling solvent-free manufacturing electrodes with any electrochemistry of choice. The cold-plasma-coating technique enables fabricating electrodes with thickness (>200 μm), high mass loading (>30 mg cm−2), high peel strength, and the ability to print lithium-ion batteries in an arbitrary geometry. This crosscutting, chemistry agnostic, platform technology would increase energy density, eliminate the use of solvents, vacuum drying, and calendering processes during production, and reduce manufacturing cost for current and future cell designs. Here, lithium iron phosphate and lithium cobalt oxide were used as examples to demonstrate the efficacy of the cold-plasma-coating technique. It is found that the mechanical peel strength of cold-plasma-coating-manufactured lithium iron phosphate is over an order of magnitude higher than that of slurry-casted lithium iron phosphate electrodes. Full cells assembled with a graphite anode and the cold-plasma-coating-lithium iron phosphate cathode offer highly reversible cycling performance with a capacity retention of 81.6% over 500 cycles. For the highly conductive cathode material lithium cobalt oxide, an areal capacity of 4.2 mAh cm−2 at 0.2 C is attained. We anticipate that this new, highly scalable manufacturing technique will redefine global lithium-ion battery manufacturing providing significantly reduced plant footprints and material costs.

Electronic Supplementary Material

Download File(s)
eem-7-1-e12503_ESM.docx (2.4 MB)

References

[1]

A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, D. Riu, J. Power Sources 2013, 241, 680.

[2]

Y. Wang, B. Liu, Q. Li, S. Cartmell, S. Ferrara, Z. D. Deng, J. Xiao, J. Power Sources 2015, 286, 330.

[3]

M. S. Whittingham, Chem. Rev. 2004, 104, 4271.

[4]

M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.

[5]

G. E. Blomgren, J. Electrochem. Soc. 2016, 164, A5019.

[6]

W. B. Hawley, J. Li, J. Energy Storage 2019, 25, 100862.

[7]

D. L. Wood Ⅲ, J. Li, C. Daniel, J. Power Sources 2015, 275, 234.

[8]

B. Ludwig, Z. Zheng, W. Shou, Y. Wang, H. Pan, Sci. Rep. 2016, 6, 23150.

[9]

J. Liu, B. Ludwig, Y. Liu, Z. Zheng, F. Wang, M. Tang, J. Wang, J. Wang, H. Pan, Y. Wang, Adv. Mater. Technol. 2017, 2, 1700106.

[10]

S. N. Bryntesen, A. H. Strømman, I. Tolstorebrov, P. R. Shearing, J. J. Lamb, O. Stokke Burheim, Energies 2021, 14, 1406.

[11]

A. M. Boyce, D. J. Cumming, C. Huang, S. P. Zankowski, P. S. Grant, D. J. L. Brett, P. R. Shearing, ACS Nano 2021, 15, 18624.

[12]

Y. Liu, R. Zhang, J. Wang, Y. Wang, iScience 2021, 24, 102332.

[13]

A. Manthiram, ACS Cent. Sci. 2017, 3, 1063.

[14]

C. Liu, X. Cheng, B. Li, Z. Chen, S. Mi, C. Lao, Materials 2017, 10, 934.

[15]

I. Ben-Barak, Y. Kamir, S. Menkin, M. Goor, I. Shekhtman, T. Ripenbein, E. Galun, D. Golodnitsky, E. Peled, J. Electrochem. Soc. 2018, 166, A5059.

[16]

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, J. A. Lewis, Adv. Mater. 2013, 25, 4539.

[17]

H. Mazor, D. Golodnitsky, L. Burstein, A. Gladkich, E. Peled, J. Power Sources 2012, 198, 264.

[18]

J. I. Hur, L. C. Smith, B. Dunn, Joule 2018, 2, 1187.

[19]

L. Ye, K. Wen, Z. Zhang, F. Yang, Y. Liang, W. Lv, Y. Lin, J. Gu, J. H. Dickerson, W. He, Adv. Energy Mater. 2016, 6, 1502018.

[20]

J. Wu, Z. Ju, X. Zhang, C. Quilty, K. J. Takeuchi, D. C. Bock, A. C. Marschilok, E. S. Takeuchi, G. Yu, ACS Nano 2021, 15, 19109.

[21]

Z. Du, C. J. Janke, J. Li, C. Daniel, D. L. Wood, J. Electrochem. Soc. 2016, 163, A2776.

[22]

S. H. Lee, C. Johnston, P. S. Grant, ACS Appl. Mater. Interfaces 2019, 11, 37859.

[23]

Y. Bao, Y. Liu, Y. Kuang, D. Fang, T. Li, Energy Storage Mater. 2020, 33, 55.

[24]

S. Shiraki, H. Oki, Y. Takagi, T. Suzuki, A. Kumatani, R. Shimizu, M. Haruta, T. Ohsawa, Y. Sato, Y. Ikuhara, T. Hitosugi, J. Power Sources 2014, 267, 881.

[25]

B. Vertruyen, N. Eshraghi, C. Piffet, J. Bodart, A. Mahmoud, F. Boschini, Materials 2018, 11, 1076.

[26]

D. J. Kirsch, S. D. Lacey, Y. Kuang, G. Pastel, H. Xie, J. W. Connell, Y. Lin, L. Hu, ACS Appl. Energy Mater. 2019, 2, 2990.

[27]

G. Schälicke, I. Landwehr, A. Dinter, K.-H. Pettinger, W. Haselrieder, A. Kwade, Energy Technol. 2020, 8, 1900309.

[28]

M. Al-Shroofy, Q. Zhang, J. Xu, T. Chen, A. P. Kaur, Y.-T. Cheng, J. Power Sources 2017, 352, 187.

[29]

M. Wang, J. Hu, Y. Wang, Y.-T. Cheng, J. Electrochem. Soc. 2019, 166, A2151.

[30]

G. Liu, H. Zheng, X. Song, V. S. Battaglia, J. Electrochem. Soc. 2012, 159, A214.

[31]

H. Chen, M. Ling, L. Hencz, H. Y. Ling, G. Li, Z. Lin, G. Liu, S. Zhang, Chem. Rev. 2018, 118, 8936.

[32]

W. Li, B. Song, A. Manthiram, Chem. Soc. Rev. 2017, 46, 3006.

[33]

X.-Y. Qiu, Q.-C. Zhuang, Q.-Q. Zhang, R. Cao, P.-Z. Ying, Y.-H. Qiang, S.-G. Sun, Phys. Chem. Chem. Phys. 2012, 14, 2617.

[34]
M. Turner, in Cold Plasma in Food and Agriculture (Eds: N. N. Misra, O. Schlüter, P. J. Cullen), Academic Press, San Diego, CA 2016.
[35]

F. L. Tabares, I. Junkar, Molecules 2021, 26, 1903.

[36]

R. Thirumdas, C. Sarangapani, U. S. Annapure, Food Biophysics 2015, DOI: https://doi.org/10.1007/s11483-014-9382-z.

[37]

C. Mandolfino, Surf. Coat. Technol. 2019, 366, 331.

[38]

P. Dimitrakellis, E. Gogolides, Adv. Colloid Interf. Sci. 2018, DOI: https://doi.org/10.1016/j.cis.2018.03.009.

[39]

S. Dong, P. Guo, Y. Chen, G.-Y. Chen, H. Ji, Y. Ran, S.-H. Li, Y. Chen, Ind. Crop. Prod. 2018, 115, 124.

[40]

G. Hong, N. Li, H. Yang, H.-S. Chen, W. Song, D. Fang, Int. J. Adhes. Adhes. 2021, 108, 102870.

[41]

J. Chen, J. Liu, Y. Qi, T. Sun, X. Li, J. Electrochem. Soc. 2013, 160, A1502.

[42]

F. Zou, A. Manthiram, Adv. Energy Mater. 2020, 10, 2002508.

Energy & Environmental Materials
Article number: e12503
Cite this article:
Liang Z, Li T, Chi H, et al. Solvent-Free Manufacturing of Lithium-Ion Battery Electrodes via Cold Plasma. Energy & Environmental Materials, 2024, 7(1): e12503. https://doi.org/10.1002/eem2.12503
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return