AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Metal–Organic Framework Enabling Poly(Vinylidene Fluoride)-Based Polymer Electrolyte for Dendrite-Free and Long-Lifespan Sodium Metal Batteries

Yusi Lei1Liang Yue1Yuruo Qi1Yubin Niu1( )Shujuan Bao1Jie Song2Maowen Xu1( )
Faculty of Materials and Energy, Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, China
Shandong Zero-One-Four Advanced Materials Co., Ltd., Feicheng 271099, China
Show Author Information

Abstract

Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and, more importantly, cause internal short circuit and lead to thermal runaway and fire. Therefore, sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries (SMBs). Herein, a design concept for the incorporation of metal–organic framework (MOF) in polymer matrix (polyvinylidene fluoride-hexafluoropropylene) is practiced to prepare a novel gel polymer electrolyte (PH@MOF polymer-based electrolyte [GPE]) and thus to achieve high-performance SMBs. The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na+ but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction. A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm−2 with areal capacity of 5 mA h cm−2 is achieved by symmetric cells based on the resulted GPE while the Na3V2O2(PO4)2F@rGO (NVOPF)|PH@MOF|Na cell also displays impressive specific cycling capacity (113.3 mA h g−1 at 1 C) and rate capability with considerable capacity retention.

Electronic Supplementary Material

Download File(s)
eem-7-1-e12511_ESM.docx (5.7 MB)

References

[1]

B. Sun, P. Xiong, U. Maitra, D. Langsdorf, K. Yan, C. Wang, J. Janek, D. Schroder, G. Wang, Adv. Mater. 2020, 32, 1903891.

[2]

Y. M. Chen, M. W. Xu, Y. H. Huang, A. Manthiram, Chem 2022, 8, 311.

[3]

Y. Zhao, K. R. Adair, X. Sun, Energy Environ. Sci. 2018, 11, 2673.

[4]

H. Liu, X. B. Cheng, Z. Jin, R. Zhang, G. Wang, L. Q. Chen, Q. B. Liu, J. Q. Huang, Q. Zhang, EnergyChem. 2019, 1, 100003.

[5]

W. Fang, H. Jiang, Y. Zheng, H. Zheng, X. Liang, Y. Sun, C. Chen, H. Xiang, J. Power Sources 2020, 455, 227956.

[6]

X. Chen, X. Shen, T. Z. Hou, R. Zhang, H. J. Peng, Q. Zhang, Chem 2020, 6, 2242.

[7]

T. Lan, C. L. Tsai, F. Tietz, X. K. Wei, M. Heggen, R. E. Dunin-Borkowski, R. Wang, Y. Xiao, Q. Ma, O. Guillon, Nano Energy 2019, 65, 104040.

[8]

D. Zhang, B. Li, S. Wang, S. Yang, ACS Appl. Mater. Interfaces 2017, 9, 40265.

[9]

G. Y. Zheng, Q. W. Lin, J. B. Ma, J. Zhang, Y. B. He, X. Tang, F. Y. Kang, W. Lv, Q. H. Yang, InfoMat 2021, 3, 1445.

[10]

L. Yue, Y. R. Qi, Y. B. Niu, S. J. Bao, M. W. Xu, Adv. Energy Mater. 2021, 11, 2102497.

[11]

B. Sun, P. Li, J. Zhang, D. Wang, P. Munroe, C. Wang, P. H. L. Notten, G. Wang, Adv. Mater. 2018, 30, 1801334.

[12]

P. Wen, P. Lu, X. Shi, Y. Yao, H. Shi, H. Liu, Y. Yu, Z. S. Wu, Adv. Energy Mater. 2020, 11, 2002930.

[13]

L. Lu, C. Sun, J. Hao, Z. Wang, S. F. Mayer, M. T. Fernández-Díaz, J. A. Alonso, B. Zou, Energy Environ. Mater. 2022, DOI: https://doi.org/10.1002/eem2.12364.

[14]

Z. Bi, W. Huang, S. Mu, W. Sun, N. Zhao, X. Guo, Nano Energy 2021, 90, 106498.

[15]

S. J. Tan, X. X. Zeng, Q. Ma, X. W. Wu, Y. G. Guo, Electrochem. Energy Rev. 2018, 1, 113.

[16]

C. Zhao, L. Liu, X. Qi, Y. Lu, F. Wu, J. Zhao, Y. Yu, Y. S. Hu, L. Chen, Adv. Energy Mater. 2018, 8, 1703012.

[17]

S. Li, N. Li, C. Sun, Inorg. Chem. Front. 2021, 8, 361.

[18]

X. Ban, W. Zhang, N. Chen, C. Sun, J. Phys. Chem. C 2018, 122, 9852.

[19]

D. Lei, Y. B. He, H. Huang, Y. Yuan, G. Zhong, Q. Zhao, X. Hao, D. Zhang, C. Lai, S. Zhang, J. Ma, Y. Wei, Q. Yu, W. Lv, Y. Yu, B. Li, Q. H. Yang, Y. Yang, J. Lu, F. Kang, Nat. Commun. 2019, 10, 4244.

[20]

C. Luo, T. Shen, H. Ji, D. Huang, J. Liu, B. Ke, Y. Wu, Y. Chen, C. Yan, Small 2020, 16, 1906208.

[21]

X. Lu, H. Wu, D. Kong, X. Li, L. Shen, Y. Lu, ACS Mater. Lett. 2020, 2, 1435.

[22]

C. Zhang, L. Shen, J. Shen, F. Liu, G. Chen, R. Tao, S. Ma, Y. Peng, Y. Lu, Adv. Mater. 2019, 31, 1808338.

[23]

W. Du, K. Shen, Y. Qi, W. Gao, M. Tao, G. Du, S. J. Bao, M. Chen, Y. Chen, M. Xu, Nano-Micro Lett. 2021, 13, 50.

[24]

N. Deng, L. Wang, Y. Feng, M. Liu, Q. Li, G. Wang, L. Zhang, W. Kang, B. Cheng, Y. Liu, Chem. Eng. J. 2020, 388, 124241.

[25]

S. H. Kim, J. S. Yeon, R. Kim, K. M. Choi, H. S. Park, J. Mater. Chem. A 2018, 6, 24971.

[26]

Z. Hao, Y. Wu, Q. Zhao, J. Tang, Q. Zhang, X. Ke, J. Liu, Y. Jin, H. Wang, Adv. Funct. Mater. 2021, 31, 2102938.

[27]

G. K. Gao, Y. R. Wang, H. J. Zhu, Y. Chen, R. X. Yang, C. Jiang, H. Ma, Y. Q. Lan, Adv. Sci. 2020, 7, 2002190.

[28]

S. Suriyakumar, M. Kanagaraj, M. Kathiresan, N. Angulakshmi, S. Thomas, A. M. Stephan, Electrochim. Acta 2018, 265, 151.

[29]

X. Ma, Y. Lou, X.-B. Chen, Z. Shi, Y. Xu, Chem. Eng. J. 2019, 356, 227.

[30]

Q. Zeng, J. Wang, X. Li, Y. Ouyang, W. He, D. Li, S. Guo, Y. Xiao, H. Deng, W. Gong, Q. Zhang, S. Huang, ACS Energy Lett. 2021, 6, 2434.

[31]

L. Shen, H. B. Wu, F. Liu, C. Zhang, S. Ma, Z. Le, Y. Lu, Nanoscale Horiz. 2019, 4, 705.

[32]

Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Nano-Micro Lett. 2021, 13, 203.

[33]

C. C. Sun, A. Yusuf, S. W. Li, X. L. Qi, Y. Ma, D. Y. Wang, Chem. Eng. J. 2021, 414, 128702.

[34]

Z. Zhang, Y. Huang, C. Li, X. Li, ACS Appl. Mater. Interfaces 2021, 1, 37262.

[35]

S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Nat. Energy 2016, 1, 16094.

[36]

O. M. Yaghi, H. Li, T. L. Groy, J. Am. Chem. Soc. 1996, 118, 9096.

[37]

S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148.

[38]

S. Bai, Y. Sun, J. Yi, Y. He, Y. Qiao, H. Zhou, Joule 2018, 2, 2117.

[39]

T. Shen, T. Liu, H. Mo, Z. Yuan, F. Cui, Y. Jin, X. Chen, RSC Adv. 2020, 10, 22881.

[40]

W. Zhang, J. Nie, F. Li, Z. L. Wang, C. Sun, Nano Energy 2018, 45, 413.

[41]

X. Fu, M. J. Hurlock, C. Ding, X. Li, Q. Zhang, W. H. Zhong, Small 2020, 18, 2106225.

[42]

R. Dutta, A. Kumar, J. Solid State Electrochem. 2018, 22, 2945.

[43]

G. T. Davis, J. E. McKinney, M. G. Broadhurst, S. C. Roth, J. Appl. Phys. 1978, 49, 4998.

[44]

L. N. Sim, S. R. Majid, A. K. Arof, Vib. Spectrosc. 2012, 58, 57.

[45]

C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, J. Zhang, Nano Energy 2017, 33, 363.

[46]

Z. Hao, Q. Zhao, J. Tang, Q. Zhang, J. Liu, Y. Jin, H. Wang, Mater. Horiz. 2021, 8, 12.

[47]

P. Wang, H. Zhang, J. Chai, T. Liu, R. Hu, Z. Zhang, G. Li, G. Cui, Solid State Ionics 2019, 337, 140.

[48]

L. Yang, Y. Jiang, X. Liang, Y. Lei, T. Yuan, H. Lu, Z. Liu, Y. Cao, J. Feng, ACS Appl. Energy Mater. 2020, 3, 10053.

[49]

R. Mishra, S. K. Singh, H. Gupta, R. K. Tiwari, D. Meghnani, A. Patel, A. Tiwari, V. K. Tiwari, R. K. Singh, Energy Fuel 2021, 35, 15153.

[50]

Q. Pan, Z. Li, W. Zhang, D. Zeng, Y. Sun, H. Cheng, Solid State Ionics 2017, 300, 60.

[51]

Y. Q. Yang, Z. Chang, M. X. Li, X. W. Wang, Y. P. Wu, Solid State Ionics 2015, 269, 1.

[52]

Harshlata, K. Mishra, D. K. Rai, Mater. Sci. Eng. B 2021, 267, 115098.

[53]

X. L. Qi, D. D. Zhou, J. Zhang, S. Hu, M. Haranczyk, D. Y. Wang, ACS Appl. Mater. Interfaces 2019, 11, 20325.

[54]

Y. Hou, W. Hu, Z. Gui, Y. Hu, Ind. Eng. Chem. Res. 2017, 56, 2036.

[55]

Z. Liu, X. Wang, J. Chen, Y. Tang, Z. Mao, D. Wang, ACS Appl. Energy Mater. 2021, 4, 623.

[56]

H. M. Law, J. Yu, S. C. T. Kwok, G. Zhou, M. J. Robson, J. Wu, F. Ciucci, Energy Storage Mater. 2022, 46, 182.

[57]

P. Bai, J. Li, F. R. Brushett, M. Z. Bazant, Energy Environ. Sci. 2016, 9, 3221.

[58]

H. J. S. Sand Ⅲ, Philos. Mag. 1901, 1, 45.

[59]

C. Ma, T. Xu, Y. Wang, Energy Storage Mater. 2020, 25, 811.

[60]

L. Fan, X. Li, Nano Energy 2018, 53, 630.

[61]

S. Janakiraman, O. Padmaraj, S. Ghosh, A. Venimadhav, J. Electroanal. Chem. 2018, 826, 142.

[62]

Y. Lei, G. Du, Y. Qi, Y. Niu, S. Bao, M. Xu, J. Colloid Interface Sci. 2021, 599, 190.

[63]

X. Wang, Z. Liu, Y. Wang, J. Chen, Z. Mao, D. Wang, ChemElectroChem 2020, 7, 5021.

[64]

X. Wang, Z. Liu, Y. Tang, J. Chen, Z. Mao, D. Wang, Solid State Ionics 2021, 359, 115532.

[65]

A. P. Vijaya Kumar Saroja, R. A. Kumar, B. C. Moharana, M. Kamaraj, S. Ramaprabhu, J. Electroanal. Chem. 2020, 859, 113864.

[66]

C. Ma, K. Dai, H. Hou, X. Ji, L. Chen, D. G. Ivey, W. Wei, Adv. Sci. 2018, 5, 1700996.

[67]

Y. Niu, M. Xu, C. Dai, B. Shen, C. M. Li, Phys. Chem. Chem. Phys. 2017, 19, 17270.

[68]

T. C. Mendes, X. Zhang, Y. Wu, P. C. Howlett, M. Forsyth, D. R. Macfarlane, ACS Sustain. Chem. Eng. 2019, 7, 3722.

[69]

Y. Gao, G. Chen, X. Wang, H. Yang, Z. Wang, W. Lin, H. Xu, Y. Bai, C. Wu, ACS Appl. Mater. Interfaces 2020, 12, 22981.

Energy & Environmental Materials
Article number: e12511
Cite this article:
Lei Y, Yue L, Qi Y, et al. Metal–Organic Framework Enabling Poly(Vinylidene Fluoride)-Based Polymer Electrolyte for Dendrite-Free and Long-Lifespan Sodium Metal Batteries. Energy & Environmental Materials, 2024, 7(1): e12511. https://doi.org/10.1002/eem2.12511

26

Views

0

Downloads

11

Crossref

8

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 10 June 2022
Revised: 09 August 2022
Published: 17 August 2022
© 2022 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return