PDF (3.6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Low-Enthalpy and High-Entropy Polymer Electrolytes for Li-Metal Battery

Haitao Zhang1Yuchen Wang1Junfeng Huang1Wen Li1Xiankan Zeng1Aili Jia1Hongzhi Peng1Xiong Zhang2Weiqing Yang1 ()
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Abstract

Ionic-conductive solid-state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion-transfer mechanism is needed to improve performance. Here we demonstrate the low-enthalpy and high-entropy (LEHE) electrolytes can intrinsically generate remarkably free ions and high mobility, enabling them to efficiently drive lithium-ion storage. The LEHE electrolytes are constructed on the basis of introducing CsPbI3 perovskite quantum dots (PQDs) to strengthen PEO@LiTFSI complexes. An extremely stable cycling >1000 h at 0.3 mA cm−2 can be delivered by LEHE electrolytes. Also, the as-developed Li | LEHE | LiFePO4 cell retains 92.3% of the initial capacity (160.7 mAh g−1) after 200 cycles. This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites. It is realized by a dramatic increment in lithium-ion transference number (0.57 vs 0.19) and a significant decline in ion-transfer activation energy (0.14 eV vs 0.22 eV) for LEHE electrolytes comparing with PEO@LiTFSI counterpart. The CsPbI3 PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy, which in turn facilitate long-term cycling stability and excellent rate-capability of lithium-metal batteries.

Electronic Supplementary Material

Download File(s)
eem-7-1-e12514_ESM.docx (15.4 MB)

References

[1]

A. Vlad, N. Singh, C. Galande, P. M. Ajayan, Adv. Energy Mater. 2015, 5, 1402115.

[2]

R. J. Chen, W. J. Qu, X. Guo, L. Li, F. Wu, Mater. Horiz. 2016, 3, 487.

[3]

J. Lu, Z. H. Chen, Z. F. Ma, F. Pan, L. A. Curtiss, K. Amine, Nat. Nanotechnol. 2016, 11, 1031.

[4]

D. Deng, Energy Sci. Eng. 2015, 3, 385.

[5]

Z. Y. Wang, L. Shen, S. G. Deng, P. Cui, X. Y. Yao, Adv. Mater. 2021, 33, 2100353.

[6]

J. Muldoon, C. B. Bucur, N. Boaretto, T. Gregory, V. Di Noto, Polym. Rev. 2015, 55, 208.

[7]

G. M. Zhou, F. Li, H. M. Cheng, Energ. Environ. Sci. 2014, 7, 1307.

[8]

L. Z. Long, S. J. Wang, M. Xiao, Y. Z. Meng, J. Mater. Chem. A 2016, 4, 10038.

[9]

M. S. Whittingham, Electrochim. Acta 1975, 20, 575.

[10]

D. R. Payne, P. V. Wright, Polymer 1982, 23, 690.

[11]

M. M. Thackeray, C. Wolverton, E. D. Isaacs, Energ. Environ. Sci. 2012, 5, 7854.

[12]

Z. Gadjourova, Y. G. Andreev, D. P. Tunstall, P. G. Bruce, Nature 2001, 412, 520.

[13]

A. M. Christie, S. J. Lilley, E. Staunton, Y. G. Andreev, P. G. Bruce, Nature 2005, 433, 50.

[14]

J. Shim, J. W. Lee, K. Y. Bae, H. J. Kim, W. Y. Yoon, J. C. Lee, ChemSusChem 2017, 10, 2274.

[15]

M. Liu, D. Zhou, Y. B. He, Y. Z. Fu, X. Y. Qin, C. Miao, H. D. Du, B. H. Li, Q. H. Yang, Z. Q. Lin, T. S. Zhao, F. Y. Kang, Nano Energy 2016, 22, 278.

[16]

C. Y. Tang, K. Hackenberg, Q. Fu, P. M. Ajayan, H. Ardebili, Nano Lett. 2012, 12, 1152.

[17]

J. X. Zhang, N. Zhao, M. Zhang, Y. Q. Li, P. K. Chu, X. X. Guo, Z. F. Di, X. Wang, H. Li, Nano Energy 2016, 28, 447.

[18]

Y. H. Li, Z. J. Sun, D. Y. Liu, Y. Y. Gao, Y. K. Wang, H. T. Bu, M. T. Li, Y. F. Zhang, G. X. Gao, S. J. Ding, J. Mater. Chem. A 2020, 8, 2021.

[19]

H. Yang, B. T. Liu, J. Bright, S. Kasani, J. H. Yang, X. W. Zhang, N. Q. Wu, ACS Appl. Energ Mater. 2020, 3, 4007.

[20]

Y. C. Wang, W. Li, Z. Xu, Y. T. Xie, Y. H. Wang, H. B. Zhao, J. F. Huang, W. Q. Yang, H. T. Zhang, ACS Appl. Energ Mater. 2021, 4, 11470.

[21]

Z. Xu, H. T. Zhang, T. Yang, X. Chu, Y. T. Xie, Q. G. Wang, Y. H. Xia, W. Q. Yang, Cell Rep. Phys. Sci. 2021, 2, 100644.

[22]

M. S. Kim, J. H. Ryu, Y. Deepika, R. Lim, I. W. Nah, K. R. Lee, L. A. Archer, W. I. Cho, Nat. Energy 2018, 3, 889.

[23]

J. Y. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, X. K. Zhang, L. Q. Zong, J. Y. Wang, L. Q. Chen, J. Qin, Y. Cui, Nat. Nanotechnol. 2019, 14, 705.

[24]

K. H. Nie, X. L. Wang, J. L. Qiu, Y. Wang, Q. Yang, J. J. Xu, X. Q. Yu, H. Li, X. J. Huang, L. Q. Chen, ACS Energy Lett. 2020, 5, 826.

[25]

X. Judez, G. G. Eshetu, C. M. Li, L. M. Rodriguez-Martinez, H. Zhang, M. Armand, Joule 2018, 2, 2208.

[26]

Y. H. Wang, X. Chu, Z. H. Zhu, D. Xiong, H. T. Zhang, W. Q. Yang, Chem. Eng. J. 2021, 423, 130203.

[27]

X. Wang, W. Zeng, L. Hong, W. W. Xu, H. K. Yang, F. Wang, H. G. Duan, M. Tang, H. Q. Jiang, Nat. Energy 2018, 3, 227.

[28]

J. F. Huang, T. Sun, M. Y. Ma, Z. Xu, Y. C. Wang, Y. T. Xie, X. Chu, X. L. Jiang, Y. B. Wang, S. L. Wang, W. Q. Yang, H. T. Zhang, ACS Appl. Energ Mater. 2022, 5, 2121.

[29]

L. Wang, X. Zhang, Y. N. Xu, C. Li, W. J. Liu, S. Yi, K. Wang, X. Z. Sun, Z. S. Wu, Y. W. Ma, Adv. Funct. Mater. 2021, 31, 2104286.

[30]

X. G. Han, Y. H. Gong, K. Fu, X. F. He, G. T. Hitz, J. Q. Dai, A. Pearse, B. Y. Liu, H. Wang, G. Rublo, Y. F. Mo, V. Thangadurai, E. D. Wachsman, L. B. Hu, Nat. Mater. 2017, 16, 572.

[31]

S. Yi, L. Wang, X. Zhang, C. Li, W. J. Liu, K. Wang, X. Z. Sun, Y. N. Xu, Z. X. Yang, Y. Cao, J. Sun, Y. W. Ma, Sci. Bull. 2021, 66, 914.

[32]

Q. Wang, Y. H. Zhou, X. Zhao, K. Chen, B. N. Gu, T. Yang, H. T. Zhang, W. Q. Yang, J. Chen, Nano Today 2021, 36, 101033.

[33]

F. L. Xu, S. G. Deng, Q. Y. Guo, D. Zhou, X. Y. Yao, Small Methods 2021, 5, 2100262.

[34]

Y. X. Chen, X. Y. Dou, K. Wang, Y. S. Han, Adv. Energy Mater. 2019, 9, 1900019.

[35]

D. C. Lin, W. Liu, Y. Y. Liu, H. R. Lee, P. C. Hsu, K. Liu, Y. Cui, Nano Lett. 2016, 16, 459.

[36]

C. Ma, K. Dai, H. S. Hou, X. B. Ji, L. B. Chen, D. G. Ivey, W. F. Wei, Adv. Sci. 2018, 5, 1700996.

[37]

M. X. Yang, B. Q. Zhao, J. Y. Li, S. M. Li, G. Zhang, S. Q. Liu, Y. H. Cui, H. Liu, ACS Appl. Energ Mater 2022, 9, 9049.

[38]

S. S. Chi, Y. C. Liu, N. Zhao, X. X. Guo, C. W. Nan, L. Z. Fan, Energy Storage Mater. 2019, 17, 309.

[39]

Z. Y. Wang, Q. Y. Guo, R. R. Jiang, S. G. Deng, J. F. Ma, P. Cui, X. Y. Yao, Chem. Eng. J. 2022, 435, 135106.

[40]

S. Zugmann, M. Fleischmann, M. Amereller, R. M. Gschwind, H. D. Wiemhofer, H. J. Gores, Electrochim. Acta 2011, 56, 3926.

[41]

M. D. Levi, D. Aurbach, J. Electroanal. Chem. 1997, 421, 79.

[42]

W. W. Zeng, L. Wang, X. Peng, T. F. Liu, Y. Y. Jiang, F. Qin, L. Hu, P. K. Chu, K. F. Huo, Y. H. Zhou, Adv. Energy Mater. 2018, 8, 1702314.

[43]

Z. X. Wang, Z. Xu, H. C. Huang, X. Chu, Y. T. Xie, D. Xiong, C. Yan, H. B. Zhao, H. T. Zhang, W. Q. Yang, ACS Nano 2020, 14, 4916.

[44]

Y. Hu, W. Chen, T. Y. Lei, B. Zhou, Y. Jiao, Y. C. Yan, X. C. Du, J. W. Huang, C. Y. Wu, X. P. Wang, Y. Wang, B. Chen, J. Xu, C. Wang, J. Xiong, Adv. Energy Mater. 2019, 9, 1802955.

[45]

D. P. Almond, A. R. West, Solid State Ion. 1986, 18-9, 1105.

[46]

W. Wieczorek, Solid State Ion. 1992, 53, 1064.

[47]

D. P. Almond, G. K. Duncan, A. R. West, Solid State Ion. 1983, 8, 159.

[48]

Q. Zhao, Z. Y. Tu, S. Y. Wei, K. H. Zhang, S. Choudhury, X. T. Liu, L. A. Archer, Angew. Chem. Int. Ed. 2018, 57, 992.

[49]

Z. X. Wang, F. L. Qi, L. C. Yin, Y. Shi, C. G. Sun, B. G. An, H. M. Cheng, F. Li, Adv. Energy Mater. 2020, 10, 1903843.

[50]

J. Evans, C. A. Vincent, P. G. Bruce, Polymer 1987, 28, 2324.

Energy & Environmental Materials
Article number: e12514
Cite this article:
Zhang H, Wang Y, Huang J, et al. Low-Enthalpy and High-Entropy Polymer Electrolytes for Li-Metal Battery. Energy & Environmental Materials, 2024, 7(1): e12514. https://doi.org/10.1002/eem2.12514
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return