PDF (5.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

In Situ Raman Monitoring of Trace Antibiotics in Different Harsh Water Environments

Chundong Liu1Fengcai Lei2Maogang Gong3Xiaoming Zhou4Xiaofei Zhao1Zhen Li1Chao Zhang1Baoyuan Man1()Jing Yu1 ()
School of Physics and Electronics, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China
College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA
Shandong Provincial Hospital, Shandong First Medical University, Jinan 250021, China
Show Author Information

Abstract

In situ surface-enhanced Raman scattering (SERS) is a widely used operando analytical technique, while facing numerous complex factors in applications under aqueous environment, such as low detection sensitivity, poor anti-interference capability, etc., resulting in unreliable detectability. To address these issues, herein a new hydrophobic SERS strategy has been attempted. By comprehensively designing and researching a SERS-active structure of superhydrophobic ZnO/Ag nanowires, we demonstrate that hydrophobicity can not only draw analytes from water onto substrate, but also adjust “hottest spot” from the bottom of the nanowires to the top. As a result, the structure can simultaneously concentrate the dispersed molecules in water and the enhanced electric field in structure into a same zone, while perfecting its own anti-interference ability. The underwater in situ analytical enhancement factor of this platform is as high as 1.67 × 1011, and the operando limited of detection for metronidazole (MNZ) reaches to 10−9 M. Most importantly, we also successfully generalized this structure to various real in situ detection scenarios, including on-site detection of MNZ in corrosive urine, real-time warning of wrong dose of MNZ during intravenous therapy, in situ monitoring of MNZ in flowing wastewater with particulate interference, etc., demonstrating the great application potential of this hydrophobic platform. This work realizes a synergistic promotion for in situ SERS performance under aqueous environment, and also provides a novel view for improving other in situ analytical techniques.

Electronic Supplementary Material

Download File(s)
eem-7-1-e12517_ESM1.tif (1.1 MB)
eem-7-1-e12517_ESM10.tif (570.4 KB)
eem-7-1-e12517_ESM11.tif (200.9 KB)
eem-7-1-e12517_ESM12.tif (119.9 KB)
eem-7-1-e12517_ESM13.tif (551.6 KB)
eem-7-1-e12517_ESM14.docx (7.1 MB)
eem-7-1-e12517_ESM2.tif (1 MB)
eem-7-1-e12517_ESM3.tif (1.9 MB)
eem-7-1-e12517_ESM4.tif (1.2 MB)
eem-7-1-e12517_ESM5.tif (2.1 MB)
eem-7-1-e12517_ESM6.tif (1.5 MB)
eem-7-1-e12517_ESM7.tif (127.6 KB)
eem-7-1-e12517_ESM8.tif (862.7 KB)
eem-7-1-e12517_ESM9.tif (90.2 KB)

References

[1]

M. Diamant, S. Baruch, E. Kassem, K. Muhsen, D. Samet, M. Leshno, U. Obolski, Nat. Commun. 2021, DOI: https://doi.org/10.1038/s41467-021-21088-5.

[2]

K. H. Lee, H. Jang, Y. S. Kim, C. H. Lee, S. H. Cho, M. Kim, H. Son, K. B. Bae, D. V. Dao, Y. S. Jung, I. H. Lee, Adv. Sci. 2021, 8, 2100640.

[3]

R. A. Oliveira, V. Cabral, K. B. Xavier, Nat. Microbiol. 2021, 6, 824.

[4]

L. L. Qu, Y. Y. Liu, M. K. Liu, G. H. Yang, D. W. Li, H. T. Li, ACS Appl. Mater. Interfaces 2016, 8, 28180.

[5]

N. Liang, P. T. Huang, X. H. Hou, Z. Li, L. Tao, L. S. Zhao, Anal. Bioanal. Chem. 2016, 408, 1701.

[6]

A. Menelaou, A. A. Somogyi, M. L. Barclay, F. Bochner, J. Chromatogr. B 1999, 731, 261.

[7]

J. H. Wang, J. Chromatogr. A 2001, 918, 435.

[8]

T. Kokulnathan, S. M. Chen, A. C. S. Appl, Mater. Inter. 2019, 11, 7893.

[9]

H. Hao, D. Y. Shi, D. Yang, Z. W. Yang, Z. G. Qiu, W. L. Liu, Z. Q. Shen, J. Yin, H. R. Wang, J. W. Li, H. Wang, M. Jin, J. Hazard. Mater. 2019, 365, 340.

[10]

M. Liu, S. Y. Shen, D. Wen, M. R. Li, T. Li, X. J. Chen, Z. Gu, R. Mo, Nano Lett. 2018, 18, 2294.

[11]

M. Reyman, M. A. van Houten, R. L. Watson, M. L. J. N. Chu, K. Arp, W. J. de Waal, I. Schiering, F. B. Plotz, R. J. L. Willems, W. van Schaik, E. A. M. Sanders, D. Bogaert, Nat. Commun. 2022, DOI: https://doi.org/10.1038/s41467-022-28525-z.

[12]

H. Teymourian, M. Parrilla, J. R. Sempionatto, N. F. Montiel, A. Barfidokht, R. Van Echelpoel, K. De Wael, J. Wang, ACS Sens. 2020, 5, 2679.

[13]

X. R. Yang, Z. Chen, W. Zhao, C. X. Liu, X. X. Qian, M. Zhang, G. Y. Wei, E. Khan, Y. H. Ng, Y. S. Ok, Chem. Eng. J. 2021, 405, 126806.

[14]

Y. C. Yang, K. Gupta, K. L. Ekinci, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 10639.

[15]

S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, Z. Q. Tian, Nat. Rev. Mater. 2016, DOI: https://doi.org/10.1038/natrevmats.2016.21.

[16]

K. A. Willets, R. P. Van Duyne, Annu. Rev. Phys. Chem. 2007, 58, 267.

[17]

J. Li, H. Liu, S. Chen, X. Liang, Y. Gao, X. Zhao, Z. Li, C. Zhang, F. Lei, J. Yu, J. Phys. Chem. Lett. 2022, 13, 5815.

[18]

D. P. dos Santos, M. L. A. Temperini, A. G. Brolo, Acc. Chem. Res. 2019, 52, 456.

[19]

J. R. Li, A. Wuethrich, A. I. Sina, H. H. Cheng, Y. L. Wang, A. Behren, P. N. Mainwaring, M. Trau, Nat. Commun. 2021, DOI: https://doi.org/10.1038/s41467-021-27100-2.

[20]

J. Yu, Y. Guo, H. J. Wang, S. Su, C. Zhang, B. Y. Man, F. C. Lei, J. Phys. Chem. Lett. 2019, 10, 3676.

[21]

J. Yu, M. S. Yang, Z. Li, C. D. Liu, Y. S. Wei, C. Zhang, B. Y. Man, F. C. Lei, Anal. Chem. 2020, 92, 14754.

[22]

H. K. Lee, Y. H. Lee, C. S. L. Koh, C. P. Q. Gia, X. M. Han, C. L. Lay, H. Y. F. Sim, Y. C. Kao, Q. An, X. Y. Ling, Chem. Soc. Rev. 2019, 48, 731.

[23]

C. C. Li, Y. M. Huang, X. Y. Li, Y. R. Zhang, Q. L. Chen, Z. W. Ye, Z. Alqarni, S. E. J. Bell, Y. K. Xu, J. Mater. Chem. C 2021, 9, 11517.

[24]

W. K. Wang, F. Zhao, M. Z. Li, C. P. Zhang, Y. H. Shao, Y. Tian, Angew. Chem. Int. Ed. 2019, 58, 5256.

[25]

L. L. Zhang, Y. Guo, R. Hao, Y. F. Shi, H. J. You, H. Nan, Y. Z. Dai, D. J. Liu, D. Y. Lei, J. X. Fang, Nat. Commun. 2021, 12, 1.

[26]

C. Q. Han, J. Chen, X. M. Wu, Y. W. Huang, Y. P. Zhao, Talanta 2014, 128, 293.

[27]

P. Veerakumar, A. Sangili, S. M. Chen, K. C. Lin, J. Mater. Chem. C 2020, 8, 7575.

[28]

M. G. Gong, Z. Yang, X. L. Xu, D. Jasion, S. Mou, H. D. Zhang, Y. Z. Long, S. Q. Ren, J. Mater. Chem. A 2014, 2, 6180.

[29]

T. Lee, W. Lee, S. W. Kim, J. J. Kim, B. S. Kim, Adv. Funct. Mater. 2016, 26, 6206.

[30]

Y. Liu, A. Das, S. Xu, Z. Y. Lin, C. Xu, Z. L. Wang, A. Rohatgi, C. P. Wong, Adv. Energy Mater. 2012, 2, 47.

[31]

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio, Nat. Photonics 2011, 5, 683.

[32]

J. N. Dong, J. Y. Huang, A. Wang, G. V. Biesold-McGee, X. N. Zhang, S. W. Gao, S. C. Wang, Y. K. Lai, Z. Q. Lin, Nano Energy 2020, 71, 104579.

[33]

F. Guo, H. Yang, J. J. Mao, J. Y. Huang, X. Q. Wang, Y. K. Lai, Compos. Commun. 2018, 10, 151.

[34]

J. S. Cai, J. Y. Huang, M. Z. Ge, J. Iocozzia, Z. Q. Lin, K. Q. Zhang, Y. K. Lai, Small 2017, 13, 1604240.

[35]

B. Bhushan, E. K. Her, Langmuir 2010, 26, 8207.

[36]

L. Feng, Y. A. Zhang, J. M. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, Langmuir 2008, 24, 4114.

[37]

M. J. Cheng, M. M. Song, H. Y. Dong, F. Shi, Small 2015, 11, 1665.

[38]

X. F. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. H. Zhang, B. Yang, L. Jiang, Adv. Mater. 2007, 19, 2213.

[39]

D. Oner, T. J. McCarthy, Langmuir 2000, 16, 7777.

[40]

L. Wu, Z. C. Dong, M. X. Kuang, Y. A. Li, F. Y. Li, L. Jiang, Y. L. Song, Adv. Funct. Mater. 2015, 25, 2237.

[41]

Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto, Langmuir 2002, 18, 5818.

[42]

S. Y. Ding, E. M. You, Z. Q. Tian, M. Moskovits, Chem. Soc. Rev. 2017, 46, 4042.

[43]

H. X. Xu, J. Aizpurua, M. Kall, P. Apell, Phys. Rev. E 2000, 62, 4318.

[44]

A. Olshtrem, O. Guselnikova, P. Postnikov, A. Trelin, M. Yusubov, Y. Kalachyova, L. Lapcak, M. Cieslar, P. Ulbrich, V. Svorcik, O. Lyutakov, Nanoscale 2020, 12, 14581.

[45]

Q. Q. Peng, N. Wang, Y. Zhu, J. Hu, H. Q. Peng, L. Li, B. Z. Zheng, J. Du, D. Xiao, J. Mater. Chem. C 2019, 7, 10465.

[46]

D. Murakami, H. Jinnai, A. Takahara, Langmuir 2014, 30, 2061.

[47]

H. Y. Wu, B. T. Cunningham, Nanoscale 2014, 6, 5162.

Energy & Environmental Materials
Article number: e12517
Cite this article:
Liu C, Lei F, Gong M, et al. In Situ Raman Monitoring of Trace Antibiotics in Different Harsh Water Environments. Energy & Environmental Materials, 2024, 7(1): e12517. https://doi.org/10.1002/eem2.12517
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return