PDF (1.5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Enhancing I0/I Conversion Efficiency by Starch Confinement in Zinc–Iodine Battery

Danyang Zhao1Qiancheng Zhu2Qiancheng Zhou1Wenming Zhang2Ying Yu1 ()Shuo Chen3()Zhifeng Ren3()
Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
Department of Physics and TcSUH, University of Houston, Houston Texas 77204, USA
Show Author Information

Abstract

The redox couple of I0/I in aqueous rechargeable iodine–zinc (I2-Zn) batteries is a promising energy storage resource since it is safe and cost-effective, and provides steady output voltage. However, the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide (I3 and I5) and side reactions on the Zn anode. Starch is a very low-cost and widely sourced food used daily around the world. “Starch turns blue when it encounters iodine” is a classic chemical reaction, which results from the unique structure of the helix starch molecule–iodine complex. Inspired by this, we employ starch to confine the shuttling of polyiodide, and thus, the I0/I conversion efficiency of an I2-Zn battery is clearly enhanced. According to the detailed characterizations and theoretical DFT calculation results, the enhancement of I0/I conversion efficiency is mainly originated from the strong bonding between the charged products of I3 and I5 and the rich hydroxyl groups in starch. This work provides inspiration for the rational design of high-performance and low-cost I2-Zn in AZIBs.

Electronic Supplementary Material

Download File(s)
eem-7-1-e12522_ESM.docx (9 MB)

References

[1]

J. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013.

[2]

B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.

[3]

H. Yang, Y. Qiao, Z. Chang, H. Deng, P. He, H. Zhou, Adv. Mater. 2020, 32, 2004240.

[4]

Q. Zhu, D. Zhao, M. Cheng, J. Zhou, K. A. Owusu, L. Mai, Y. Yu, Adv. Energy Mater. 2019, 9, 1901081.

[5]

G. Yasin, M. Arif, T. Mehtab, X. Lu, D. Yu, N. Muhammad, M. T. Nazir, H. Song, Energy Storage Mater. 2020, 25, 644.

[6]

H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu, X. He, Energy Storage Mater. 2020, 33, 188.

[7]

W. Ling, F. Mo, J. Q. Wang, Q. J. Liu, Y. Liu, Q. X. Yang, Y. J. Qiu, Y. Huang, Mater. Today Phys. 2021, 20, 100458.

[8]

Y. Q. Jiang, K. Ma, M. L. Sun, Y. Y. Li, J. P. Liu, Energy Environ. Mater. 2022, DOI: 10.1002/eem2.12357.

[9]

D. Chao, W. Zhou, F. Xie, C. Ye, H. Li, M. Jaroniec, S.-Z. Qiao, Sci Adv 2020, 6, eaba4098.

[10]

Q. Zhu, M. Cheng, B. Zhang, K. Jin, S. Chen, Z. Ren, Y. Yu, Adv. Funct. Mater. 2019, 29, 1905979.

[11]

Y. Liang, H. Dong, D. Aurbach, Y. Yao, Nat. Energy 2020, 5, 646.

[12]

Q. Zhu, L. Yu, S. Song, D. Wang, D. Zhao, J. Zhou, Y. Yu, S. Chen, Z. Ren, Mater. Today Phys. 2021, 19, 100425.

[13]

N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng, J. Chen, Chem. Soc. Rev. 2020, 49, 4203.

[14]

L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang, Q. Zhang, X. Shen, J. Zhao, X. Yu, H. Li, X. Huang, L. Chen, Y.-S. Hu, Nat. Energy 2019, 4, 495.

[15]

C. Huang, Q. Wang, G. Tian, D. Zhang, Mater. Today Phys. 2021, 21, 100518.

[16]

L. Ma, Y. Ying, S. Chen, Z. Huang, X. Li, H. Huang, C. Zhi, Angew. Chem. Int. Ed. 2021, 60, 3791.

[17]

H. Tian, T. Gao, X. Li, X. Wang, C. Luo, X. Fan, C. Yang, L. Suo, Z. Ma, W. Han, C. Wang, Nat. Commun. 2017, 8, 14083.

[18]

Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi, X. Zhou, Z. Li, L. Gao, L. Zhang, X. Liang, Nat. Commun. 2021, 12, 170.

[19]

C. Yang, J. Chen, X. Ji, T. P. Pollard, X. Lü, C.-J. Sun, S. Hou, Q. Liu, C. Liu, T. Qing, Y. Wang, O. Borodin, Y. Ren, K. Xu, C. Wang, Nature 2019, 569, 245.

[20]

C. Sun, X. Shi, Y. Zhang, J. Liang, J. Qu, C. Lai, ACS Nano 2020, 14, 1176.

[21]

H. Tang, W. Li, L. Pan, K. Tu, F. Du, T. Qiu, J. Yang, C. P. Cullen, N. McEvoy, C. Zhang, Adv. Funct. Mater. 2019, 29, 1901907.

[22]

X. Li, N. Li, Z. Huang, Z. Chen, G. Liang, Q. Yang, M. Li, Y. Zhao, L. Ma, B. Dong, Q. Huang, J. Fan, C. Zhi, Adv. Mater. 2021, 33, 2006897.

[23]

H. Pan, B. Li, D. Mei, Z. Nie, Y. Shao, G. Li, X. S. Li, K. S. Han, K. T. Mueller, V. Sprenkle, J. Liu, ACS Energy Lett. 2017, 2, 2674.

[24]

K. K. Sonigara, J. Zhao, H. K. Machhi, G. Cui, S. S. Soni, Adv. Energy Mater. 2020, 10, 2001997.

[25]

D. Yu, A. Kumar, T. A. Nguyen, M. T. Nazir, G. Yasin, ACS Sustainable Chem. Eng. 2020, 8, 13769.

[26]

X. Li, T. Gao, F. Han, Z. Ma, X. Fan, S. Hou, N. Eidson, W. Li, C. Wang, Adv. Energy Mater. 2018, 8, 1701728.

[27]

J. J. Hong, L. Zhu, C. Chen, L. Tang, H. Jiang, B. Jin, T. C. Gallagher, Q. Guo, C. Fang, X. Ji, Angew. Chem. Int. Ed. 2019, 131, 16057.

[28]

W. Li, K. Wang, K. Jiang, J. Mater. Chem. A 2020, 8, 3785.

[29]

H. Park, R. K. Bera, R. Ryoo, Adv. Energy Sustainability Res. 2021, 2, 2100076.

[30]

X. Li, M. Li, Z. Huang, G. Liang, Z. Chen, Q. Yang, Q. Huang, C. Zhi, Energy Environ. Sci. 2021, 14, 407.

[31]

R. C. Teitelbaum, S. L. Ruby, T. J. Marks, J. Am. Chem. Soc. 1980, 102, 3322.

[32]

R. E. Rundle, R. R. Baldwin, J. Am. Chem. Soc. 1943, 65, 554.

[33]

F. Wang, J. Tseng, Z. Liu, P. Zhang, G. Wang, G. Chen, W. Wu, M. Yu, Y. Wu, X. Feng, Adv. Mater. 2020, 32, 2000287.

[34]

S. Zhang, J. Hao, H. Li, P. Zhang, Z. Yin, Y. Li, B. Zhang, Z. Lin, S. Qiao, Adv. Mater. 2022, 34, 2201716.

[35]

W. Wu, C. Li, Z. Wang, H.-Y. Shi, Y. Song, X.-X. Liu, X. Sun, Chem. Eng. J. 2022, 428, 131283.

[36]

G. Yasin, S. Ibrahim, S. Ibraheem, S. Ali, R. Iqbal, A. Kumar, M. Tabish, Y. Slimani, T. A. Nguyen, H. Xu, W. Zhao, J. Mater. Chem. A 2021, 9, 18222.

[37]

G. Yasin, M. Arif, J. Ma, S. Ibraheem, D. Yu, L. Zhang, D. Liu, L. Dai, Inorg. Chem. Front. 2022, 9, 1058.

[38]

C. Xie, Y. Liu, W. Lu, H. Zhang, X. Li, Energy Environ. Sci. 2019, 12, 1834.

[39]

J. Yang, Y. Song, Q. Liu, A. Tang, J. Mater. Chem. A 2021, 9, 16093.

[40]

Z. Pei, Z. Zhu, D. Sun, J. Cai, A. Mosallanezhad, M. Chen, G. Wang, Mater. Res. Bull. 2021, 141, 111347.

[41]

Q. Zhang, Z. Wu, F. Liu, S. Liu, J. Liu, Y. Wang, T. Yan, J. Mater. Chem. A 2017, 5, 15235.

[42]

H. Tian, S. Zhang, Z. Meng, W. He, W.-Q. Han, ACS Energy Lett. 2017, 2, 1170.

[43]

I. Sifuentes-Nieves, G. Velazquez, P. C. Flores-Silva, E. Hernández-Hernández, G. Neira-Velázquez, C. Gallardo-Vega, G. Mendez-Montealvo, Int. J. Biol. Macromol. 2020, 144, 682.

[44]

S. Lv, Y. Zhang, J. Gu, H. Tan, Int. J. Biol. Macromol. 2018, 113, 338.

[45]

S.-W. Hou, W. Wei, Y. Wang, J.-H. Gan, Y. Lu, N.-P. Tao, X.-C. Wang, Y. Liu, C.-H. Xu, Spectrochim. Acta A 2019, DOI: https://doi.org/10.1016/j.saa.2019.02.080.

[46]

D. Kalita, N. Kaushik, C. L. Mahanta, J. Food Sci. Tech. 2014, 51, 2790.

[47]

D. Zhao, Q. Zhu, X. Li, M. Dun, Y. Wang, X. Huang, Batteries Supercaps 2022, 5, e202100341.

[48]

Q. Zhu, Q. Xiao, B. Zhang, Z. Yan, X. Liu, S. Chen, Z. Ren, Y. Yu, J. Mater. Chem. A 2020, 8, 10761.

[49]

H. Li, L. Ma, C. Han, Z. Wang, Z. Liu, Z. Tang, C. Zhi, Nano Energy 2019, 62, 550.

Energy & Environmental Materials
Article number: e12522
Cite this article:
Zhao D, Zhu Q, Zhou Q, et al. Enhancing I0/I Conversion Efficiency by Starch Confinement in Zinc–Iodine Battery. Energy & Environmental Materials, 2024, 7(1): e12522. https://doi.org/10.1002/eem2.12522
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return