PDF (2.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Borohydride Ammoniate Solid Electrolyte Design for All-Solid-State Mg Batteries

Yuepeng Pang1Zhengfang Nie1Fen Xu2Lixian Sun2Junhe Yang1Dalin Sun3Fang Fang3()Shiyou Zheng1 ()
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials, Guilin University of Electronic Technology, Guilin 541004, China
Department of Materials Science, Fudan University, Shanghai 200433, China
Show Author Information

Abstract

Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries. In this work, we develop an amorphous Mg borohydride ammoniate, Mg(BH4)2·2NH3, as a solid Mg electrolyte that prepared by a NH3 redistribution between 3D framework-γ-Mg(BH4)2 and Mg(BH4)2·6NH3. Amorphous Mg(BH4)2·2NH3 exhibits a high Mg-ion conductivity of 5 × 10−4 S cm−1 at 75 ℃, which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations. Moreover, amorphous Mg(BH4)2·2NH3 shows an apparent electrochemical stability window of 0–1.4 V with the help of in-situ formed interphases, which can prevent further side reactions without hindering the Mg-ion transfer. Based on the above superiorities, amorphous Mg(BH4)2·2NH3 enables the stable cycling of all-solid-state Mg cells, as the critical current density reaches 3.2 mA cm−2 for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g−1 with a coulombic efficiency of 91.7% (first cycle) for Mg||TiS2 cells.

Electronic Supplementary Material

Download File(s)
eem-7-1-e12527_ESM.docx (2.8 MB)

References

[1]

F. Liu, T. Wang, X. Liu, L. Z. Fan, Adv. Energy Mater. 2021, 11, 2000787.

[2]

P. Saha, M. K. Datta, O. I. Velikokhatnyi, A. Manivannan, D. Alman, P. N. Kumta, Prog. Mater. Sci. 2014, DOI: https://doi.org/10.1016/j.pmatsci.2014.04.001.

[3]

H. Fan, X. Zhang, Y. Zhao, J. Xiao, H. Yuan, G. Wang, Y. Lin, J. Zhang, L. Pan, T. Pan, Y. Liu, Y. Zhang, Energy Environ. Mater. 2022, DOI: 10.1002/eem2.12327.

[4]

H. D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Energy Environ. Sci. 2013, 6, 2265.

[5]

R. Deivanayagam, B. J. Ingram, R. Shahbazian-Yassar, Energy Storage Mater. 2019, 21, 136.

[6]

J. Muldoon, C. B. Bucur, A. G. Oliver, T. Sugimoto, M. Matsui, H. S. Kim, G. D. Allred, J. Zajicek, Y. Kotani, Energy Environ. Sci. 2012, 5, 5941.

[7]
C. Liebenow, J. Appl. Electrochem. 1997, 27, 221.
[8]

R. E. Doe, R. Han, J. Hwang, A. J. Gmitter, I. Shterenberg, H. D. Yoo, N. Pour, D. Aurbach, Chem. Commun. 2014, 50, 243.

[9]

O. Tutusaus, R. Mohtadi, T. S. Arthur, F. Mizuno, E. G. Nelson, Y. V. Sevryugina, Angew. Chem. Int. Ed. 2015, 54, 7900.

[10]

B. Li, R. Masse, C. Liu, Y. Hu, W. Li, G. Zhang, G. Cao, Energy Storage Mater. 2019, 22, 96.

[11]

B. McAllister, L. Kyne, T. Schon, D. Seferos, Joule 2019, 3, 620.

[12]

Y. Zhang, H. Geng, W. Wei, J. Ma, L. Chen, C. C. Li, Energy Storage Mater. 2019, 20, 118.

[13]

J. Lin, L. Lin, S. Qu, D. Deng, Y. Wu, X. Yan, Q. Xie, L. Wang, D. Peng, Energy Environ. Mater. 2022, 5, 133.

[14]

Y. Gao, A. M. Nolan, P. Du, Y. Wu, C. Yang, Q. Chen, Y. Mo, S. H. Bo, Chem. Rev. 2020, 120, 5954.

[15]

P. Jaschin, Y. Gao, Y. Li, S. H. Bo, J. Mater. Chem. A 2020, 8, 2875.

[16]

M. Adamu, G. M. Kale, J. Phys. Chem. C 2016, 120, 17909.

[17]

T. Yamanaka, A. Hayashi, A. Yamauchi, M. Tatsumisago, Solid State Ionics 2014, 262, 601.

[18]

P. Canepa, S. H. Bo, G. Sai Gautam, B. Key, W. D. Richards, T. Shi, Y. Tian, Y. Wang, J. Li, G. Ceder, Nat. Commun. 2017, 8, 1759.

[19]

S. Higashi, K. Miwa, M. Aoki, K. Takechi, Chem. Commun. 2014, 50, 1320.

[20]

F. Cuevas, M. B. Amdisen, M. Baricco, C. E. Buckley, Y. W. Cho, P. de Jongh, L. M. de Kort, J. B. Grinderslev, V. Gulino, B. C. Hauback, M. Heere, T. Humphries, T. R. Jensen, S. Kim, K. Kisu, Y.-S. Lee, H.-W. Li, R. Mohtadi, K. T. Møller, P. Ngene, D. Noréus, S. Orimo, M. Paskevicius, M. Polanski, S. Sartori, L. N. Skov, M. H. Sørby, B. C. Wood, V. A. Yartys, M. Zhu, M. Latroche, Prog. Energy 2022, 4, 032001.

[21]

Y. Pang, Y. Liu, J. Yang, S. Zheng, C. Wang, Mater. Today Nano 2022, 18, 100194.

[22]

R. Le Ruyet, R. Berthelot, E. Salager, P. Florian, B. Fleutot, R. Janot, J. Phys. Chem. C 2019, 123, 10756.

[23]

R. Le Ruyet, B. Fleutot, R. Berthelot, Y. Benabed, G. Hautier, Y. Filinchuk, R. Janot, ACS Appl. Energy Mater. 2020, 3, 6093.

[24]

E. Roedern, R. S. Kuhnel, A. Remhof, C. Battaglia, Sci. Rep. 2017, 7, 46189.

[25]

K. Kisu, S. Kim, M. Inukai, H. Oguchi, S. Takagi, S.-I. Orimo, ACS Appl. Energy Mater. 2020, 3, 3174.

[26]

Y. Yan, W. Dononelli, M. Jorgensen, J. B. Grinderslev, Y. S. Lee, Y. W. Cho, R. Cerny, B. Hammer, T. R. Jensen, Phys. Chem. Chem. Phys. 2020, 22, 9204.

[27]

Y. Yan, J. B. Grinderslev, M. Jogensen, L. N. Skov, J. Skibsted, T. R. Jensen, ACS Appl. Energy Mater. 2020, 3, 9264.

[28]

Y. Yan, J. Grinderslev, T. Burankova, S. Wei, J. Embs, J. Skibsted, T. Jensen, J. Phys. Chem. Lett. 2022, 13, 2211.

[29]

Q. Wang, H. Li, R. Zhang, Z. Liu, H. Deng, W. Cen, Y. Yan, Y. Chen, Energy Storage Mater. 2022, 51, 630.

[30]

Y. Pang, J. Pan, J. Yang, S. Zheng, C. Wang, Electrochem. Energy Rev. 2021, DOI: https://doi.org/10.1007/s41918-020-00092-1.

[31]

O. Tutusaus, R. Mohtadi, N. Singh, T. S. Arthur, F. Mizuno, ACS Energy Lett. 2017, 2, 224.

[32]

Y. Yang, Y. Liu, Y. Li, M. Gao, H. Pan, Chem. Asian J. 2013, 8, 476.

[33]

G. Soloveichik, J.-H. Her, P. W. Stephens, Y. Gao, J. Rijssenbeek, M. Andrus, J.-C. Zhao, Inorg. Chem. 2008, 47, 4290.

[34]

O. Zavorotynska, A. El-Kharbachi, S. Deledda, B. C. Hauback, Int. J. Hydrog. Energy 2016, 41, 14387.

[35]

Y. Yang, Y. Liu, H. Wu, W. Zhou, M. Gao, H. Pan, Phys. Chem. Chem. Phys. 2014, 16, 135.

[36]

Y. Filinchuk, B. Richter, T. R. Jensen, V. Dmitriev, D. Chernyshov, H. Hagemann, Angew. Chem. Int. Ed. 2011, 50, 11162.

[37]

S. Zhao, B. Xu, N. Sun, Z. Sun, Y. Zeng, L. Meng, Int. J. Hydrog. Energy 2015, 40, 8721.

[38]
Y. Limoge, “Diffusion in Amorphous Materials.” Diffusion in Materials, Springer, Dordrecht 1990, pp. 601.
[39]

J. L. Souquet, Ann. Rev. Mater. Sci. 1981, 11, 211.

[40]

V. Gulino, A. Wolczyk, A. Golov, R. Eremin, M. Palumbo, C. Nervi, V. Blatov, D. Proserpio, M. Baricco, Inorg. Chem. Front. 2020, 7, 3115.

[41]

F. Han, Y. Zhu, X. He, Y. Mo, C. Wang, Adv. Energy Mater. 2016, 6, 1501590.

[42]

F. Lu, Y. Pang, M. Zhu, F. Han, J. Yang, F. Fang, D. Sun, S. Zheng, C. Wang, Adv. Funct. Mater. 2019, 29, 1809219.

[43]

R. Davidson, A. Verma, D. Santos, F. Hao, C. Fincher, S. Xiang, J. Van Buskirk, K. Xie, M. Pharr, P. P. Mukherjee, S. Banerjee, ACS Energy Lett. 2019, 4, 375.

[44]

X. Sun, P. Bonnick, L. F. Nazar, ACS Energy Lett. 2016, 1, 297.

[45]

Y. Pang, X. Wang, X. Shi, F. Xu, L. Sun, J. Yang, S. Zheng, Adv. Energy Mater. 2020, 10, 1902795.

[46]

M. Zhu, Y. Pang, F. Lu, X. Shi, J. Yang, S. Zheng, ACS Appl. Mater. Interfaces 2019, 11, 14136.

[47]

P. E. Blochl, O. Jepsen, O. Andersen, Phys. Rev. B 1994, 49, 16223.

[48]

G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[49]

J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[50]

G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 2000, 113, 9901.

[51]

M. A. Tschopp, M. F. Horstemeyer, F. Gao, X. Sun, M. Khaleel, Scr. Mater. 2011, 64, 908.

Energy & Environmental Materials
Article number: e12527
Cite this article:
Pang Y, Nie Z, Xu F, et al. Borohydride Ammoniate Solid Electrolyte Design for All-Solid-State Mg Batteries. Energy & Environmental Materials, 2024, 7(1): e12527. https://doi.org/10.1002/eem2.12527
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return