PDF (1.6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid-State Batteries Operating at Room Temperature

Tian Gu1,2Likun Chen1,2Yanfei Huang1,3Jiabin Ma1,2Peiran Shi1,2Jie Biao1,2Ming Liu1()Wei Lv1Yanbing He1 ()
Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center, Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
Show Author Information

Abstract

The poor contact and side reactions between Li1.3Al0.3Ti1.7(PO4)3 (LATP) and lithium (Li) anode cause uneven Li plating and high interfacial impendence, which greatly hinder the practical application of LATP in high-energy density solid-state Li metal batteries. In this work, a multifunctional ferroelectric BaTiO3 (BTO)/poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) (P[VDF-TrFE-CTFE]) composite interlayer (B-TERB) is constructed between LATP and Li metal anode, which not only suppresses the Li dendrite growth, but also improves the interfacial stability and maintains the intimate interfacial contact to significantly decrease the interfacial resistance by two orders of magnitude. The B-TERB interlayer generates a uniform electric field to induce a uniform and lateral Li deposition, and therefore avoids the side reactions between Li metal and LATP achieving excellent interface stability. As a result, the Li/LATP@B-TERB/Li symmetrical batteries can stably cycle for 1800 h at 0.2 mA cm−2 and 1000 h at 0.5 mA cm−2. The solid-state LiFePO4/LATP@B-TERB/Li full batteries also exhibit excellent cycle performance for 250 cycles at 0.5 C and room temperature. This work proposes a novel strategy to design multifunctional ferroelectric interlayer between ceramic electrolytes and Li metal to enable stable room-temperature cycling performance.

Electronic Supplementary Material

Download File(s)
eem-6-6-e12531_ESM.docx (8.8 MB)

References

[1]

L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Adv. Energy Mater. 2018, 8, 1702657.

[2]

C. Xue, X. Zhang, S. Wang, L. Li, C.-W. Nan, ACS Appl. Mater. Interfaces 2020, 12, 24837.

[3]

J. Zhang, J. Zhao, L. Yue, Q. Wang, J. Chai, Z. Liu, X. Zhou, H. Li, Y. Guo, G. Cui, Adv. Energy Mater. 2015, 5, 1501082.

[4]

W. Peng, J. Chai, Z. Zhang, H. Zhang, G. Cui, J. Mater. Chem. A 2019, 7, 5295.

[5]

Z. Wan, D. Lei, W. Yang, C. Liu, K. Shi, X. Hao, L. Shen, W. Lv, B. Li, Q. H. Yang, Adv. Funct. Mater. 2019, 29, 1805301.

[6]

H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen, C. Yan, H. Zhao, G. Cui, S. Zhang, Adv. Energy Mater. 2020, 10, 2000049.

[7]

H. Chen, M. Zheng, S. Qian, H. Y. Ling, Z. Wu, X. Liu, C. Yan, S. Zhang, Carbon Eng. 2021, 3, 929.

[8]

S. Qian, H. Chen, Z. Wu, D. Li, X. Liu, Y. Tang, S. Zhang, Batt. Supercap. 2021, 4, 39.

[9]

C. Wang, K. Fu, S. P. Kammampata, D. W. Mc Owen, L. Hu, Chem. Rev. 2020, 120, 4257.

[10]

H. Geng, J. Lan, M. Ao, Y. Lin, C. W. Nan, Electrochim. Acta 2011, 56, 3406.

[11]

T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Adv. Mater. 2018, 30, 1803075.

[12]

T. Krauskopf, B. Mogwitz, H. Hartmann, D. K. Singh, W. G. Zeier, J. Janek, Adv. Energy Mater. 2020, 10, 2000945.

[13]

C. Yu, S. Ganapathy, E. R. H. van Eck, L. van Eijck, N. de Klerk, E. M. Kelder, M. Wagemaker, J. Energy Chem. 2019, 38, 1. https://doi.org/10.1016/j.jechem.2018.12.017.

[14]

S. Wang, X. Zhang, S. Liu, C. Xin, C. Xue, F. Richter, L. Li, L. Fan, Y. Lin, Y. Shen, J. Janek, C.-W. Nan, J. Mater. 2020, 6, 70.

[15]

H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, ChemInform 1992, 65, 2200.

[16]

M. Monchak, T. Hupfer, A. Senyshyn, H. Boysen, D. Chernyshov, T. Hansen, K. G. Schell, E. C. Bucharsky, M. J. Hoffmann, H. Ehrenberg, Inorg. Chem. 2016, 55, 2941.

[17]

X. Liu, J. Tan, J. Fu, R. Yuan, H. Wen, C. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 11696.

[18]

K. Yang, L. Chen, J. Ma, Y. B. He, F. Kang, InfoMat 2021, 3, 1195.

[19]

P. Hartmann, T. Leichtweiss, M. R. Busche, M. Schneider, M. Reich, J. Sann, P. Adelhelm, J. Janek, J. Phys. Chem. C 2013, 117, 21064.

[20]

F. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. J. Dudney, H. Wang, C. Wang, Nat. Energy 2019, 4, 187.

[21]

X. Liu, R. Garcia-Mendez, A. R. Lupini, Y. Cheng, Z. D. Hood, F. Han, A. Sharafi, J. C. Idrobo, N. J. Dudney, C. Wang, Nat. Mater. 2021, 20, 1485.

[22]

D. Cao, X. Sun, Q. Li, A. Natan, P. Xiang, H. Zhu, Matter 2020, 3, 57.

[23]

L. L. Wang, R. C. Xie, B. B. Chen, X. R. Yu, J. Ma, C. Li, Z. W. Hu, X. W. Sun, C. J. Xu, S. M. Dong, T. S. Chan, J. Luo, G. L. Cui, L. Q. Chen, Nat. Commun. 2020, 11(9), 5889.

[24]

Y. Liu, Q. Sun, Y. Zhao, B. Wang, P. Kaghazchi, K. R. Adair, R. Li, C. Zhang, J. Liu, L.-Y. Kuo, ACS Appl. Mater. Interfaces 2018, 10, 31240.

[25]

X. Han, Y. Gong, K. K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Nat. Mater. 2017, 16, 572.

[26]

W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, J. B. Goodenough, J. Am. Chem. Soc. 2016, 138, 9385.

[27]

Z. Yang, H. Yuan, C. Zhou, Y. Wu, W. Tang, S. Sang, H. Liu, Chem. Eng. J. 2020, 392, 123650.

[28]

Q. Cheng, A. Li, N. Li, S. Li, A. Zangiabadi, W. Huang, A. C. Li, T. Jin, Q. Song, W. Xu, Joule 2019, 3, 1510.

[29]

J.-Y. Liang, X.-X. Zeng, X.-D. Zhang, T.-T. Zuo, M. Yan, Y.-X. Yin, J.-L. Shi, X.-W. Wu, Y.-G. Guo, L.-J. Wan, J. Am. Chem. Soc. 2019, 141, 9165.

[30]

Y. Jin, C. Liu, X. Zong, D. Li, M. Fu, S. Tan, Y. Xiong, J. Wei, J. Power Sources 2020, 460, 228125.

[31]

T. Wang, Y. Li, J. Zhang, K. Yan, P. Jaumaux, J. Yang, C. Wang, D. Shanmukaraj, B. Sun, M. Armand, Y. Cui, G. Wang, Nat. Commun. 2020, 11, 5429.

[32]

X. Hao, Q. Zhao, S. Su, S. Zhang, J. Ma, L. Shen, Q. Yu, L. Zhao, Y. Liu, F. Kang, Adv. Energy Mater. 2019, 9, 1901604.

[33]

S. Xia, Y. Zhao, J. Yan, J. Yu, B. Ding, ACS Nano 2021, 15, 3161.

[34]

K. C. Verma, R. Kotnala, Mater. Chem. Phys. 2016, 174, 120.

[35]

Y. Cho, D. Ahn, J. B. Park, S. Pak, S. Lee, B. O. Jun, J. Hong, S. Y. Lee, J. E. Jang, J. Hong, Adv. Electron. Mater. 2016, 2, 1600225.

[36]

J.-Y. Liang, X.-X. Zeng, X.-D. Zhang, P.-F. Wang, J.-Y. Ma, Y.-X. Yin, X.-W. Wu, Y.-G. Guo, L.-J. Wan, J. Am. Chem. Soc. 2018, 140, 6767.

[37]

X. Liu, X. Zhou, Y. Pan, J. Yang, H. Xiang, Y. Yuan, S. Liu, H. Luo, D. Zhang, J. Sun, Adv. Mater. 2020, 32, 2004813.

[38]

Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma, Z. Liu, Y. Zhu, H. N. Alshareef, Adv. Mater. 2022, 34, 2106937.

[39]

C. Wang, L. Zhang, M. Al-Mamun, Y. Dou, P. Liu, D. Su, G. Wang, S. Zhang, D. Wang, H. Zhao, Adv. Energy Mater. 2019, 9, 1900909.

[40]

Y. Guo, R. Wang, C. Cui, R. Xiong, Y. Wei, T. Zhai, H. Li, Nano Lett. 2020, 20, 7680.

[41]

J. Zhu, J. Zhao, Y. Xiang, M. Lin, H. Wang, B. Zheng, H. He, Q. Wu, J. Y. Huang, Y. Yang, Chem. Mater. 2020, 32, 4998.

[42]

C. Wang, M. Liu, M. Thijs, F. G. B. Ooms, S. Ganapathy, M. Wagemaker, Nat. Commun. 2021, 12, 6536.

[43]

K. Yang, L. Chen, J. Ma, C. Lai, Y. Huang, J. Mi, J. Biao, D. Zhang, P. Shi, H. Xia, Angew. Chem. Int. Ed. 2021, 60, 24668.

[44]

S. Li, S. Q. Zhang, L. Shen, Q. Liu, J. B. Ma, W. Lv, Y. B. He, Q. H. Yang, Adv. Sci. 2020, 7, 1903088.

[45]

Y. Yan, J. Ju, S. Dong, Y. Wang, G. Cui, Adv. Sci. 2021, 8, 2003887.

Energy & Environmental Materials
Cite this article:
Gu T, Chen L, Huang Y, et al. Engineering Ferroelectric Interlayer between Li1.3Al0.3Ti1.7(PO4)3 and Lithium Metal for Stable Solid-State Batteries Operating at Room Temperature. Energy & Environmental Materials, 2023, 6(6). https://doi.org/10.1002/eem2.12531
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return