PDF (2.6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Room Temperature Synthesis of Vertically Aligned Amorphous Ultrathin NiCo-LDH Nanosheets Bifunctional Flexible Supercapacitor Electrodes

Kwadwo Asare Owusu1,2Zhaoyang Wang3,4Ali Saad1,2Felix Ofori Boakye4Muhammad Asim Mushtaq1Muhammad Tahir5Ghulam Yasin1,2Dongqing Liu6Zhengchun Peng2Xingke Cai1 ()
Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
College of Physics and Optoelectronics, Shenzhen University, 3688 Nanhai Boulevard, Nanshan District, Shenzhen 518060, China
School of Chemistry and Materials Science, Hubei Engineering University, No. 272 Traffic Avenue, Xiaogan 432000, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China
Key Laboratory of Green Printing, CAS Research Centre for Excellence in Molecular Science, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, China
College of Mechatronics and Control Engineering, Shenzhen University, 3688 Nanhai Boulevard, Nanshan District, Shenzhen 518050, China
Show Author Information

Abstract

Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors. Herein, we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate, which was in situ transformed from Co-metal–organic framework materials nano-columns by a simple ion exchange process at room temperature. Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH, the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm−2 as cathode and anode at 2 mA cm−2, and 79.5% and 80% capacity have been preserved at 50 mA cm−2. In the meantime, they all showed excellent cycling performance with negligible change after >10000 cycles. By fabricating them into an asymmetric supercapacitor, the device achieves high energy densities (5.61 mWh cm−2 and 0.352 mW cm−3). This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.

Electronic Supplementary Material

Download File(s)
eem-7-2-e12545_ESM.docx (2.9 MB)

References

[1]
J. García-Martínez, Nanotechnology for the Energy Challenge, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2013.
[2]

Y. Gogotsi, Nature 2014, 509, 568.

[3]

S. Chu, A. Majumdar, Nature 2012, 488, 294.

[4]

M. Winter, R. J. Brodd, Chem. Rev. 2004, 104, 4245.

[5]

M. Armand, J.-M. Tarascon, Nature 2008, 451, 652.

[6]

S. Wang, D. Liu, X. Cai, L. Zhang, Y. Liu, X. Qin, R. Zhao, X. Zeng, C. Han, C. Zhan, F. Kang, B. Li, Nano Energy 2021, 90, 106510.

[7]

X. Zeng, D. Liu, S. Wang, S. Liu, X. Cai, L. Zhang, R. Zhao, B. Li, F. Kang, A. C. S. Appl, Mater. Interfaces 2020, 12, 37047.

[8]

J. Ding, W. Hu, E. Paek, D. Mitlin, Chem. Rev. 2018, 118, 6457.

[9]

Y. Shao, M. F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R. B. Kaner, Chem. Rev. 2018, 118, 9233.

[10]

C. F. Liu, Y. C. Liu, T. Y. Yi, C. C. Hu, Carbon 2019, 145, 529.

[11]

J. Chen, M. Chen, W. Zhou, X. Xu, B. Liu, W. Zhang, C. Wong, ACS Nano 2022, 16, 2461.

[12]

N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Adv. Mater. 2017, 29, 1605336.

[13]

G. G. Amatucci, F. Badway, A. du Pasquier, T. Zheng, J. Electrochem. Soc. 2001, 148, A930.

[14]

K. A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K. M. Hercule, C. Lin, C. Shi, Q. Wei, L. Zhou, L. Mai, Nat. Commun. 2017, 8, 14264.

[15]

Y.-J. Gu, W. Wen, J.-M. Wu, J. Power Sources 2020, 469, 228425.

[16]

N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, H. Xia, Adv. Mater. 2017, 29, 1700804.

[17]

W. Su, F. Wu, L. Fang, J. Hu, L. Liu, T. Guan, X. Long, H. Luo, M. Zhou, J. Alloys Compd. 2019, 799, 15.

[18]

K. Qin, L. Wang, S. Wen, L. Diao, P. Liu, J. Li, L. Ma, C. Shi, C. Zhong, W. Hu, E. Liu, N. Zhao, J. Mater. Chem. A 2018, 6, 8109.

[19]

X. Han, J. Li, J. Lu, S. Luo, J. Wan, B. Li, C. Hu, X. Cheng, Nano Energy 2021, 86, 106079.

[20]

Q. Li, Y. Xu, S. Zheng, X. Guo, H. Xue, H. Pang, Small 2018, 14, 1800426.

[21]

P. Geng, L. Wang, M. Du, Y. Bai, W. Li, Y. Liu, S. Chen, P. Braunstein, Q. Xu, H. Pang, Adv. Mater. 2022, 34, 2107836.

[22]

W. Li, X. Guo, P. Geng, M. Du, Q. Jing, X. Chen, G. Zhang, H. Li, Q. Xu, P. Braunstein, H. Pang, Adv. Mater. 2021, 33, 2105163.

[23]

S. Zheng, Q. Li, H. Xue, H. Pang, Q. Xu, Nat. Sci. Rev. 2020, 7, 305.

[24]

T. Wang, Z. Kou, S. Mu, J. Liu, D. He, I. S. Amiinu, W. Meng, K. Zhou, Z. Luo, S. Chaemchuen, F. Verpoort, Adv. Funct. Mater. 2018, 28, 1705048.

[25]

J. Zhang, T. Zhang, D. Yu, K. Xiao, Y. Hong, CrstEngComm 2015, 17, 8212.

[26]

T. Guan, L. Fang, L. Liu, F. Wu, Y. Lu, H. Luo, J. Hu, B. Hu, M. Zhou, J. Alloys Compd. 2019, 799, 521.

[27]

Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng, R. Dai, X. Liu, L. He, L. Mai, Adv. Funct. Mater. 2019, 29, 1809004.

[28]

X. Li, H. Wu, C. Guan, A. M. Elshahawy, Y. Dong, S. J. Pennycook, J. Wang, Small 2019, 15, 1803895.

[29]

Y. Sun, H. Xu, X. Zhao, Z. Hui, C. Yu, L. Wang, J. Xue, Y. Zhao, R. Zhou, H. Dai, J. Mater. Chem. B 2019, 7, 6232.

[30]

K. A. Owusu, Z. Wang, L. Qu, Z. Liu, J. A.-A. Mehrez, Q. Wei, L. Zhou, L. Mai, Chin. Chem. Lett. 2020, 31, 1620.

[31]

N. S. McIntyre, M. G. Cook, Anal. Chem. 2002, 47, 2208.

[32]

Z. Lv, Q. Zhong, Y. Bu, Adv. Mater. Interfaces 2018, 5, 1800438.

[33]

B. Li, P. Gu, Y. Feng, G. Zhang, K. Huang, H. Xue, H. Pang, Adv. Funct. Mater. 2017, 27, 1605784.

[34]

H. Liang, J. Lin, H. Jia, S. Chen, J. Qi, J. Cao, T. Lin, W. Fei, J. Feng, J. Power Sources 2018, 378, 248.

[35]

J. Yang, C. Yu, C. Hu, M. Wang, S. Li, H. Huang, K. Bustillo, X. Han, C. Zhao, W. Guo, Adv. Funct. Mater. 2018, 28, 1803272.

[36]

J. Yang, C. Yu, X. Fan, Z. Ling, J. Qiu, Y. Gogotsi, J. Mater. Chem. A 2013, 1, 1963.

[37]

G. Yilmaz, K. M. Yam, C. Zhang, H. J. Fan, G. W. Ho, Adv. Mater. 2017, 29, 1606814.

[38]

L. Gao, J. U. Surjadi, K. Cao, H. Zhang, P. Li, S. Xu, C. Jiang, J. Song, D. Sun, Y. Lu, A. C. S. Appl, Mater. Interfaces 2017, 9, 5409.

[39]

F. Zhu, W. Liu, Y. Liu, W. Shi, Chem. Eng. J. 2020, 383, 123150.

[40]

X. Wu, Y. Ru, Y. Bai, G. Zhang, Y. Shi, H. Pang, Coord. Chem. Rev. 2022, 451, 214260.

[41]

J. Zhang, K. Xiao, T. Zhang, G. Qian, Y. Wang, Y. Feng, Electrochim. Acta 2017, 226, 113.

[42]

Y. He, X. Zhang, J. Wang, Y. Sui, J. Qi, Z. Chen, P. Zhang, C. Chen, W. Liu, Adv. Mater. Interfaces 2021, 8, 2100642.

[43]

Z. Jiang, Z. Li, Z. Qin, H. Sun, X. Jiao, D. Chen, Nanoscale 2013, 5, 11770.

[44]

J. Wang, Y. Wei, J. Yu, Appl. Clay Sci. 2013, 72, 37.

[45]

L. Wei, H. E. Karahan, S. Zhai, H. Liu, X. Chen, Z. Zhou, Y. Lei, Z. Liu, Adv. Mater. 2017, 29, 1701410.

[46]

Y. Liu, Y. Wang, C. Shi, Y. Chen, D. Li, Z. He, C. Wang, L. Guo, J. Ma, Carbon 2020, 165, 129.

[47]

Y. Liu, X. Teng, Y. Mi, Z. Chen, J. Mater. Chem. A 2017, 5, 24407.

[48]

C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, J. Wang, Adv. Energy Mater. 2017, 7, 1602391.

[49]

J. H. Lee, H. J. Lee, S. Y. Lim, K. H. Chae, S. H. Park, K. Y. Chung, E. Deniz, J. W. Choi, Adv. Funct. Mater. 2017, 27, 1605225.

[50]

H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B 1997, 101, 7717.

[51]

Y. Jiang, L. Zhang, H. Zhang, C. Zhang, S. Liu, J. Power Sources 2016, 329, 473.

[52]

Z.-H. Huang, F.-F. Sun, M. Batmunkh, W.-H. Li, H. Li, Y. Sun, Q. Zhao, X. Liu, T.-Y. Ma, J. Mater. Chem. A 2019, 7, 11826.

[53]

X. Zheng, H. Quan, X. Li, H. He, Q. Ye, X. Xu, F. Wang, Nanoscale 2016, 8, 17055.

[54]

J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Nano Lett. 2014, 14, 831.

[55]

L. Liu, L. Fang, F. Wu, J. Hu, S. Zhang, H. Luo, B. Hu, M. Zhou, J. Alloys Compd. 2020, 824, 153929.

[56]

D. Su, Z. Tang, J. Xie, Z. Bian, J. Zhang, D. Yang, D. Zhang, J. Wang, Y. Liu, A. Yuan, Appl. Surf. Sci. 2019, 469, 487.

[57]

D. Chen, H. Chen, X. Chang, P. Liu, Z. Zhao, J. Zhou, G. Xu, H. Lin, S. Han, J. Alloys Compd. 2017, 729, 866.

[58]

A. D. Jagadale, G. Guan, X. Li, X. Du, X. Ma, X. Hao, A. Abudula, J. Power Sources 2016, 306, 526.

[59]

X. Cai, X. Shen, L. Ma, Z. Ji, C. Xu, A. Yuan, Chem. Eng. J. 2015, 268, 251.

[60]

J.-J. Zhou, Q. Li, C. Chen, Y.-L. Li, K. Tao, L. Han, Chem. Eng. J. 2018, 350, 551.

[61]

X. Wang, F. Huang, F. Rong, P. He, R. Que, J. Mater. Chem. A 2019, 7, 12018.

[62]

Y. Zhao, X. He, R. Chen, Q. Liu, J. Liu, J. Yu, J. Li, H. Zhang, H. Dong, M. Zhang, Chem. Eng. J. 2018, 352, 29.

[63]

C. Xia, Q. Jiang, C. Zhao, P. M. Beaujuge, H. N. Alshareef, Nano Energy 2016, 24, 78.

[64]

H. Li, Y. Gao, C. Wang, G. Yang, Adv. Energy Mater. 2015, 5, 1401767.

[65]

J. Chen, H. Chen, M. Chen, W. Zhou, Q. Tian, C. P. Wong, Chem. Eng. J. 2022, 428, 131380.

[66]

G. Nagaraju, S. C. Sekhar, B. Ramulu, J. S. Yu, Small 2019, 15, 1805418.

[67]

W. Chen, T. Wei, L.-E. Mo, S. Wu, Z. Li, S. Chen, X. Zhang, L. Hu, Chem. Eng. J. 2020, 400, 125856.

[68]

C. Chen, D. Yan, X. Luo, W. Gao, G. Huang, Z. Han, Y. Zeng, Z. Zhu, A. C. S. Appl, Mater. Interfaces 2018, 10, 4662.

[69]

C. Chen, S. Wang, X. Luo, W. Gao, G. Huang, Y. Zeng, Z. Zhu, J. Power Sources 2019, 409, 112.

[70]

S. Guan, X. Fu, Z. Lao, C. Jin, Z. Peng, ACS Sustain. Chem. Eng. 2019, 7, 11672.

[71]

J. Hao, S. Peng, H. Li, S. Dang, T. Qin, Y. Wen, J. Huang, F. Ma, D. Gao, F. Li, J. Mater. Chem. A 2018, 6, 16094.

Energy & Environmental Materials
Article number: e12545
Cite this article:
Owusu KA, Wang Z, Saad A, et al. Room Temperature Synthesis of Vertically Aligned Amorphous Ultrathin NiCo-LDH Nanosheets Bifunctional Flexible Supercapacitor Electrodes. Energy & Environmental Materials, 2024, 7(2): e12545. https://doi.org/10.1002/eem2.12545
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return