PDF (1.6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Significantly Improved High-Temperature Energy Storage Performance of BOPP Films by Coating Nanoscale Inorganic Layer

Tiandong Zhang1,2 ()Hainan Yu1Young Hoon Jung2Changhai Zhang1Yu Feng1Qingguo Chen1Keon Jae Lee2Qingguo Chi1 ()
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 350701, Korea
Show Author Information

Abstract

Biaxially oriented polypropylene (BOPP) is one of the most commonly used commercial capacitor films, but its upper operating temperature is below 105 ℃ due to the sharply increased electrical conduction loss at high temperature. In this study, growing an inorganic nanoscale coating layer onto the BOPP film’s surface is proposed to suppress electrical conduction loss at high temperature, as well as increase its upper operating temperature. Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films, respectively. The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated. The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance. Specifically, when the aluminum nitride (AlN) acts as a coating layer, the AlN-BOPP-AlN sandwich-structured films possess a discharged energy density of 1.5 J cm−3 with an efficiency of 90% at 125 ℃, accompanying an outstandingly cyclic property. Both the discharged energy density and operation temperature are significantly enhanced, indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films.

Electronic Supplementary Material

Download File(s)
eem-7-2-e12549_ESM.docx (4.8 MB)

References

[1]

X. Luo, J. H. Wang, M. Dooner, J. Clarke, Appl. Energy 2015, 137, 511.

[2]

Y. Xue, X. P. Zhang, C. H. Yang, IEEE Trans. Power Syst. 2019, 34, 3069.

[3]

X. L. Yuan, X. Liu, J. Zuo, Renew. Sust. Energ. Rev. 2015, 42, 298.

[4]

N. Satyanarayana, R. K. Rajawat, S. Basu, A. D. P. Rao, K. C. Mittal, Instrum. Exp. Tech. 2016, 59, 368.

[5]

H. Li, Y. Zhou, Y. Liu, L. Li, Y. Liu, Q. Wang, Chem. Soc. Rev. 2021, 50, 6369.

[6]
S. Cheng, Y. Zhou, Q. Li, presented at ICHVE, Polymer-based dielectric materials for high-temperature film capacitors. IEEE InternationaI Conference on High Voltage Engineering and Application (ICHVE) 2018.
[7]

Q. B. Yuan, G. Li, F. Z. Yao, S. D. Cheng, Y. F. Wang, R. Ma, S. B. Mi, M. Gu, K. Wang, J. F. Li, H. Wang, Nano Energy 2018, 52, 203.

[8]

B. Xiong, H. Hao, S. J. Zhang, H. X. Liu, M. H. Cao, J. Am. Ceram. Soc. 2011, 94, 3412.

[9]

Y. L. Zhang, W. L. Li, Z. Y. Wang, Y. L. Qiao, Y. Yu, Y. Zhao, R. X. Song, H. T. Xia, W. D. Fei, J. Mater. Chem. A 2019, 7, 17797.

[10]

S. H. Liu, S. X. Xue, W. Q. Zhang, J. W. Zhai, G. H. Chen, J. Mater. Chem. A 2014, 2, 18040.

[11]

X. H. Han, S. Chen, X. G. Lv, H. Luo, D. Zhang, C. R. Bowen, Phys. Chem. Chem. Phys. 2018, 20, 2826.

[12]

A. Mayeen, M. S. Kala, M. S. Jayalakshmy, S. Thomas, D. Rouxel, J. Philip, R. N. Bhowmik, N. Kalarikkal, Dalton Trans. 2018, 47, 2039.

[13]

J. N. Ho, T. R. Jow, IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 990.

[14]

H. H. Wu, F. P. Zhuo, H. M. Qiao, L. K. Venkataraman, M. P. Zheng, S. Z. Wang, H. Huang, B. Li, X. P. Mao, Q. B. Zhang, Energy Environ. Mater. 2021, 5, 486.

[15]

S. Cheng, Y. Zhou, J. Hu, J. L. He, Q. Li, IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 498.

[16]

Y. Zhou, Q. Li, B. Dang, Y. Yang, T. Shao, H. Li, J. Hu, R. Zeng, J. L. He, Q. Wang, Adv. Mater. 2018, 30, 1805672.

[17]

T. Zhang, X. Chen, Y. Thakur, B. Lu, Q. Y. Zhang, J. Runt, Q. M. Zhang, Sci. Adv. 2020, 6, eaax6622.

[18]

W. H. Xu, J. Liu, T. W. Chen, X. Y. Jiang, X. S. Qian, Y. Zhang, Z. H. Jiang, Y. H. Zhang, Small 2019, 15, 1901582.

[19]

E. J. Barshaw, J. White, M. J. Chait, J. B. Cornette, J. Bustamante, F. Folli, D. Biltchick, G. Borelli, G. Picci, M. Rabuffi, IEEE Trans. Magn. 2006, 43, 223.

[20]

Q. Li, L. Chen, M. R. Gadinski, S. H. Zhang, G. Z. Zhang, H. U. Li, E. Iagodkine, A. Haque, L. Q. Chen, T. N. Jackson, Q. Wang, Nature 2015, 536, 576.

[21]

Z. B. Zhang, M. H. Litt, L. Zhu, Macromolecules 2017, 50, 5816.

[22]

Y. Thakur, M. H. Lean, Q. M. Zhang, Appl. Phys. Lett. 2017, 110, 122905.

[23]

Y. Thakur, T. Zhang, C. Iacob, T. N. Yang, J. Bernholc, L. Q. Chen, J. Runt, Q. M. Zhang, Nanoscale 2017, 9, 10992.

[24]

D. Ai, H. Li, Y. Zhou, L. L. Ren, Z. B. Han, B. Yao, W. Zhou, L. Zhao, J. M. Xu, Q. Wang, Adv. Energy Mater. 2020, 10, 1903881.

[25]

K. Hayashida, RSC Adv. 2016, 6, 64871.

[26]

Y. Zhou, C. Yuan, S. Wang, Y. J. Zhu, S. Cheng, X. Yang, Y. Yang, J. Hu, J. L. He, Q. Li, Energy Storage Mater. 2020, 28, 255.

[27]

C. Yuan, Y. Zhou, Y. J. Zhu, J. J. Liang, S. J. Wang, S. M. Peng, Y. S. Li, S. Cheng, M. C. Yang, J. Hu, B. Zhang, R. Zeng, J. L. He, Q. Li, Nat. Commun. 2020, 11, 3919.

[28]

Y. K. Zhu, Y. J. Zhu, X. Y. Huang, J. Chen, Q. Li, J. L. He, P. K. Jiang, Adv. Energy Mater. 2019, 9, 1901826.

[29]

T. D. Zhang, L. Y. Yang, C. H. Zhang, Y. Feng, J. Wang, Z. H. Shen, Q. G. Chen, Q. Q. Lei, Q. G. Chi, Mater. Horizons 2022, 9, 1273.

[30]

G. Lengyel, J. Appl. Phys. 1966, 37, 807.

[31]

A. Azizi, M. R. Gadinski, Q. Li, M. Abu AlSaud, J. J. Wang, Y. Wang, B. Wang, F. H. Liu, L. Q. Chen, N. Alem, Q. Wang, Adv. Mater. 2017, 29, 1701864.

[32]

S. Cheng, Y. Zhou, Y. S. Li, C. Yuan, M. C. Yang, J. Fu, J. Hu, J. L. He, Q. Li, Energy Storage Mater. 2021, 42, 445.

[33]

Z. W. Bao, X. Z. Du, S. Ding, J. H. Chen, Z. Z. Dai, C. C. Liu, Y. C. Wang, Y. W. Yin, X. G. Li, ACS Appl. Energ. Mater. 2022, 5, 3119.

[34]

J. F. Dong, R. C. Hu, X. W. Xu, J. Chen, Y. J. Niu, F. Wang, J. Y. Hao, K. Wu, Q. Wang, H. Wang, Adv. Funct. Mater. 2021, 31, 2102644.

[35]

P. J. Kelly, R. D. Arnell, Vacuum 2000, 56, 159.

[36]

P. Raman, I. A. Shchelkanov, J. McLain, D. N. Ruzic, J. Vac. Sci. Technol. A 2015, 3, 031304.

[37]

K. Yim, Y. Yong, J. Lee, K. Lee, H. H. Nahm, J. Yoo, C. Lee, C. S. Hwang, S. Han, NPG Asia Mater. 2015, 7, e190.

[38]

Z. X. Wang, G. D. Wang, X. T. Liu, S. Z. Wang, T. L. Wang, S. Y. Zhang, J. X. Yu, G. Zhao, L. Zhang, J. Mater. Chem. C 2021, 48, 17201.

[39]

T. D. Zhang, C. Yin, C. H. Zhang, Y. Feng, W. L. Li, Q. G. Chi, Q. G. Chen, W. D. Fei, Compos. Part. B-Eng. 2021, 221, 109207.

[40]

J. Zhu, D. Zhao, W. B. Luo, Y. Zhang, Y. R. Li, J. Cryst. Growth 2008, 4, 731.

[41]

M. Legallais, H. Mehdi, S. David, F. Bassani, S. Labau, B. Pelissier, T. Baron, E. Martinez, G. Ghibaudo, B. Salem, ACS Appl. Mater. Inter. 2020, 15, 39870.

[42]

R. Vandana, M. Gupta, R. P. Tomar, V. Tandon, Phys. Status Solidi A-Appl. Mat. 2021, 15, 2000708.

[43]

A. Das, M. Rath, D. R. Nair, M. S. R. Rao, A. DasGupta, Appl. Surf. Sci. 2021, 550, 149308.

[44]

Z. Li, L. An, S. Khuje, J. Y. Tan, Y. Hu, Y. L. Huang, D. Petit, D. Faghihi, J. Yu, S. Q. Ren, Sci. Adv. 2021, 40, 7410.

[45]

X. Y. Huang, L. Y. Xie, Z. W. Hu, P. K. Jiang, IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 375.

[46]

F. C. Chiu, T. M. Pan, T. K. Kundu, C. H. Shih, Adv. Mater. Sci. Eng. 2014, 2014, 578168.

[47]

G. Liu, Y. Feng, T. D. Zhang, C. H. Zhang, Q. G. Chi, Y. Q. Zhang, Y. Zhang, Q. Q. Lei, J. Mater. Chem. A 2021, 9, 16384.

[48]

Y. S. Li, S. Cheng, S. J. Wang, C. Yuan, Z. Luo, Y. J. Zhu, J. Hu, J. L. He, Q. Li, Compos. Sci. Technol. 2021, 202, 108594.

[49]

S. Gupta, I. Offenbach, J. Ronzello, Y. Cao, S. Boggs, R. A. Weiss, M. Cakmak, J. Polym. Sci. B Polym. Phys. 2017, 55, 1497.

[50]

Q. Li, F. H. Liu, T. N. Yang, M. R. Gadinski, G. Z. Zhang, L. Q. Chen, Q. Wang, P. Natl. Acad. Sci. USA. 2016, 113, 9995.

[51]

J. Simmons, Phys. Rev. 1967, 155, 657.

[52]

T. D. Zhang, L. Y. Yang, J. Y. Ruan, C. H. Zhang, Q. G. Chi, Macromol. Mater. Eng. 2021, 306, 2100514.

[53]

T. D. Zhang, Z. F. Qi, Y. Feng, C. H. Zhang, Q. G. Chi, Q. G. Chen, Proc. CSEE 2022, 42, 2797.

[54]

Y. F. Wang, S. Nasreen, D. Kamal, Z. Z. Li, C. Wu, J. D. Huo, L. H. Chen, R. Ramprasad, Y. Cao, ACS Appl. Mater. Inter. 2021, 13, 46142.

[55]

W. A. Harrison, Phys. Rev. 1961, 123, 85.

[56]

R. J. Klein, P. Barber, W. M. Chance, H. C. Z. Loye, IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1234.

[57]

H. X. Chen, Z. B. Pan, Y. Cheng, X. P. Ding, J. J. Liu, Q. G. Chi, M. H. Yang, J. H. Yu, Z. M. Dang, J. Mater. Chem. A 2022, 10, 1579.

[58]

P. Khanchaitit, K. Han, M. R. Gadinski, Q. Li, Q. Wang, Nat. Commun. 2013, 4, 2845.

[59]

P. Wang, L. M. Yao, Z. B. Pan, S. H. Shi, J. H. Yu, Y. Zhou, Y. Liu, J. J. Liu, Q. G. Chi, J. W. Zhai, Q. Wang, Adv. Mater. 2021, 33, 2103338.

Energy & Environmental Materials
Article number: e12549
Cite this article:
Zhang T, Yu H, Jung YH, et al. Significantly Improved High-Temperature Energy Storage Performance of BOPP Films by Coating Nanoscale Inorganic Layer. Energy & Environmental Materials, 2024, 7(2): e12549. https://doi.org/10.1002/eem2.12549
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return