PDF (11.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Reconstruction of Postinfarcted Cardiac Functions Through Injection of Tanshinone IIA@ Reactive Oxygen Species-Sensitive Microspheres Encapsulated in a Thermoreversible Hydrogel

Ling Yu1,2,3Yubin Liang1,2,3Lei Gao4Peipei Chen1,2,3Zhiqiang Yu5 ()Minzhou Zhang1,2,3()Aleksander Hinek6Shuai Mao1,2,3()
Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
Guangdong Provincial Branch of National Clinical Research Centre for Chinese Medicine Cardiology, Guangzhou 510120, China
Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093, USA
Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
Translational Medicine, Hospital for Sick Children, Toronto M5G 0A4, Canada
Show Author Information

Abstract

Myocardial damage resulting from acute myocardial infarction often leads to progressive heart failure and sudden death, highlighting the urgent clinical need for effective therapies. Recently, tanshinone IIA has been identified as a promising therapeutic agent for myocardial infarction. However, efficient delivery remains a major issue that limits clinical translation. To address this problem, an injectable thermosensitive poly (lactic acid-co-glycolic acid)-block-poly (ethylene glycol)-block-poly (lactic acid-co-glycolic acid) gel (PLGA-PEG-PLGA) system encapsulating tanshinone IIA-loaded reactive oxygen species-sensitive microspheres (Gel−MS/tanshinone IIA) has been designed and synthesized in this study. The thermosensitive hydrogel exhibits good mechanical properties after reaching body temperature. Microspheres initially immobilized by the gel exhibit excellent reactive oxygen species-triggered release properties in a high-reactive oxygen species environment after myocardial infarction onset. As a result, encapsulated tanshinone IIA is effectively released into the infarcted myocardium, where it exerts local anti-pyroptotic and anti-inflammatory effects. Importantly, the combined advantages of this technique contribute to the mitigation of left ventricular remodeling and the restoration of cardiac function following tanshinone IIA. Therefore, this novel, precision-guided intra-tissue therapeutic system allows for customized local release of tanshinone IIA, presenting a promising alternative treatment strategy aimed at inducing beneficial ventricular remodeling in the post-infarct heart.

Electronic Supplementary Material

Video
eem-7-2-e12555_ESM1.mp4
Download File(s)
eem-7-2-e12555_ESM2.docx (9.9 MB)

References

[1]

M. Gulati, P. D. Levy, D. Mukherjee, E. Amsterdam, D. L. Bhatt, K. K. Birtcher, R. Blankstein, J. Boyd, R. P. Bullock-Palmer, T. Conejo, D. B. Diercks, F. Gentile, J. P. Greenwood, E. P. Hess, S. M. Hollenberg, W. A. Jaber, H. Jneid, J. A. Joglar, D. A. Morrow, R. E. O’Connor, M. A. Ross, L. J. Shaw, Circulation 2021, 144, e368.

[2]

M. A. Pfeffer, B. Claggett, E. F. Lewis, C. B. Granger, L. Køber, A. P. Maggioni, D. L. Mann, J. J. V. McMurray, J. L. Rouleau, S. D. Solomon, P. G. Steg, O. Berwanger, M. Cikes, C. G. De Pasquale, C. East, A. Fernandez, K. Jering, U. Landmesser, R. Mehran, B. Merkely, F. Vaghaiwalla Mody, M. C. Petrie, I. Petrov, M. Schou, M. Senni, D. Sim, P. van der Meer, M. Lefkowitz, Y. Zhou, J. Gong, E. Braunwald, N. Engl. J. Med. 2021, 385, 1845.

[3]

S. P. Kwon, B. H. Hwang, E. H. Park, H. Y. Kim, J. R. Lee, M. Kang, S. Y. Song, M. Jung, H. S. Sohn, E. Kim, C. W. Kim, K. Y. Lee, G. C. Oh, E. Choo, S. Lim, Y. Chung, K. Chang, B. S. Kim, Small 2021, 17, e2101207.

[4]

K. Jiang, Z. Tu, K. Chen, Y. Xu, F. Chen, S. Xu, T. Shi, J. Qian, L. Shen, J. Hwa, D. Wang, Y. Xiang, J. Clin. Invest. 2022, 132, e151268.

[5]

G. M. Dittrich, N. Froese, X. Wang, H. Kroeger, H. Wang, M. Szaroszyk, M. Malek-Mohammadi, J. Cordero, M. Keles, M. Korf-Klingebiel, K. C. Wollert, R. Geffers, M. Mayr, S. J. Conway, G. Dobreva, J. Bauersachs, J. Heineke, Basic Res. Cardiol. 2021, 116, 26.

[6]

A. R. Perestrelo, A. C. Silva, J. Oliver-De La Cruz, F. Martino, V. Horváth, G. Caluori, O. Polanský, V. Vinarský, G. Azzato, G. de Marco, V. Žampachová, P. Skládal, S. Pagliari, A. Rainer, P. Pinto-do-Ó, A. Caravella, K. Koci, D. S. Nascimento, G. Forte, Circ. Res. 2021, 128, 24.

[7]

A. C. Egbe, J. H. Anderson, N. M. Ammash, N. W. Taggart, JACC Cardiovasc. Imaging 2020, 13, 1863.

[8]

P. Klein, S. D. Anker, A. Wechsler, I. Skalsky, P. Neuzil, L. S. Annest, M. Bifi, T. McDonagh, C. Frerker, T. Schmidt, H. Sievert, A. N. Demaria, S. Kelle, Eur. J. Heart Fail. 2019, 21, 1638.

[9]

W. Zhang, C. Liu, J. Li, Y. Lu, H. Li, J. Zhuang, X. Ren, M. Wang, C. Sun, Am. J. Chin. Med. 2022, 50, 209.

[10]

R. Guo, L. Li, J. Su, S. Li, S. E. Duncan, Z. Liu, G. Fan, Drug Des. Devel. Ther. 2020, 14, 4735.

[11]

W. Zhang, H. He, J. Liu, J. Wang, S. Zhang, S. Zhang, Z. Wu, Biomaterials 2013, 34, 306.

[12]

X. Liu, M. Ye, C. An, L. Pan, L. Ji, Biomaterials 2013, 34, 6893.

[13]

M. A. Ansari, F. B. Khan, H. A. Safdari, A. Almatroudi, M. A. Alzohairy, M. Safdari, M. Amirizadeh, S. Rehman, M. J. Equbal, M. Hoque, Pharmacol. Res. 2021, 164, 105364.

[14]

J. Zhang, K. Hu, L. Di, P. Wang, Z. Liu, J. Zhang, P. Yue, W. Song, J. Zhang, T. Chen, Z. Wang, Y. Zhang, X. Wang, C. Zhan, Y. C. Cheng, X. Li, Q. Li, J. Y. Fan, Y. Shen, J. Y. Han, H. Qiao, Adv. Drug Deliv. Rev. 2021, 178, 113964.

[15]

S. Mao, L. Wang, P. Chen, Y. Lan, R. Guo, M. Zhang, Artif. Cells Nanomed. Biotechnol. 2018, 46, S707.

[16]

T. M. Yau, F. D. Pagani, D. M. Mancini, H. L. Chang, A. Lala, Y. J. Woo, M. A. Acker, C. H. Selzman, E. G. Soltesz, J. A. Kern, S. Maltais, E. Charbonneau, S. Pan, M. E. Marks, E. G. Moquete, K. L. O’Sullivan, W. C. Taddei-Peters, L. K. McGowan, C. Green, E. A. Rose, N. Jeffries, M. K. Parides, R. D. Weisel, M. A. Miller, J. Hung, P. T. O’Gara, A. J. Moskowitz, A. C. Gelijns, E. Bagiella, C. A. Milano, JAMA 2019, 321, 1176.

[17]

K. Kumar, K. Nguyen, S. Waxman, B. D. Nearing, G. A. Wellenius, S. X. Zhao, R. L. Verrier, J. Am. Coll. Cardiol. 2003, 41, 1831.

[18]

W. Zhang, C. Ning, W. Xu, H. Hu, M. Li, G. Zhao, J. Ding, X. Chen, Theranostics 2018, 8, 3331.

[19]

W. Wang, J. Chen, M. Li, H. Jia, X. Han, J. Zhang, Y. Zou, B. Tan, W. Liang, Y. Shang, Q. Xu, A. Sigen, W. Wang, J. Mao, X. Gao, G. Fan, W. Liu, ACS Appl. Mater. Interfaces 2019, 11, 2880.

[20]

M. Shilo, H. Oved, L. Wertheim, I. Gal, N. Noor, O. Green, E. S. Baruch, D. Shabat, A. Shapira, T. Dvir, Adv. Sci. (Weinh). 2021, 8, e2102919.

[21]

J. Zhou, W. Liu, X. Zhao, Y. Xian, W. Wu, X. Zhang, N. Zhao, F. J. Xu, C. Wang, Adv. Sci. (Weinh). 2021, 8, e2100505.

[22]

J. Xie, Y. Yao, S. Wang, L. Fan, J. Ding, Y. Gao, S. Li, L. Shen, Y. Zhu, C. Gao, Adv. Healthc. Mater. 2022, 11, e2101855.

[23]

Z. Zhang, R. Dalan, Z. Hu, J. W. Wang, N. W. Chew, K. K. Poh, R. S. Tan, T. W. Soong, Y. Dai, L. Ye, X. Chen, Adv. Mater. 2022, 34, e2202169.

[24]

H. Bugger, K. Pfeil, Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165768.

[25]

L. Yu, Z. Wang, Z. Mo, B. Zou, Y. Yang, R. Sun, W. Ma, M. Yu, S. Zhang, Z. Yu, Acta Pharm. Sin. B 2004, 2021, 11.

[26]

M. Yao, Y. Lu, L. Shi, Y. Huang, Q. Zhang, J. Tan, P. Hu, J. Zhang, G. Luo, N. Zhang, Bioact. Mater. 2022, 9, 168.

[27]

H. Zhang, S. Xu, J. Zhang, Z. Wang, D. Liu, L. Guo, C. Cheng, Y. Cheng, D. Xu, M. G. Kong, M. Rong, P. K. Chu, Biomaterials 2021, 276, 121057.

[28]

J. R. Martin, P. Patil, F. Yu, M. K. Gupta, C. L. Duvall, Biomaterials 2020, 263, 120377.

[29]

Y. W. Won, A. N. Patel, D. A. Bull, Biomaterials 2014, 35, 5627.

[30]

H. Zhou, D. Tang, X. Kang, H. Yuan, Y. Yu, X. Xiong, N. Wu, F. Chen, X. Wang, H. Xiao, D. Zhou, Adv. Sci. (Weinh). 2022, 9, e2200732.

[31]

N. Ma, D. Y. Cheung, J. T. Butcher, J. Biomed. Mater. Res. A 2022, 110, 76.

[32]

S. Sharifi, M. M. Islam, H. Sharifi, R. Islam, D. Koza, F. Reyes-Ortega, D. Alba-Molina, P. H. Nilsson, C. H. Dohlman, T. E. Mollnes, J. Chodosh, M. Gonzalez-Andrades, Bioact. Mater. 2021, 6, 3947.

[33]

T. Ozeki, D. Kaneko, K. Hashizawa, Y. Imai, T. Tagami, H. Okada, Int. J. Pharm. 2012, 427, 299.

[34]

H. Chang, F. Cai, Y. Zhang, M. Jiang, X. Yang, J. Qi, L. Wang, L. Deng, W. Cui, X. Liu, Small Methods. 2022, 6, e2101201.

[35]

V. Janbandhu, V. Tallapragada, R. Patrick, Y. Li, D. Abeygunawardena, D. T. Humphreys, E. Martin, A. O. Ward, O. Contreras, N. Farbehi, E. Yao, J. Du, S. L. Dunwoodie, N. Bursac, R. P. Harvey, Cell Stem Cell 2022, 29, 281.

[36]

Y. Zhang, P. Murugesan, K. Huang, H. Cai, Nat. Rev. Cardiol. 2020, 17, 170.

[37]

Z. A. Almsherqi, C. S. McLachlan, M. B. Slocinska, F. E. Sluse, R. Navet, N. Kocherginsky, I. Kostetski, D. Y. Shi, S. L. Liu, P. Mossop, Y. Deng, Cell Res. 2006, 16, 297.

[38]

V. Mellin, M. Isabelle, A. Oudot, C. Vergely-Vandriesse, C. Monteil, B. Di Meglio, J. P. Henry, B. Dautreaux, L. Rochette, C. Thuillez, P. Mulder, Eur. Heart J. 2005, 26, 1544.

[39]

J. Deng, Int. J. Cardiol. 2021, 334, 97.

[40]

T. P. Fidler, C. Xue, M. Yalcinkaya, B. Hardaway, S. Abramowicz, T. Xiao, W. Liu, D. G. Thomas, M. A. Hajebrahimi, J. Pircher, C. Silvestre-Roig, A. G. Kotini, L. L. Luchsinger, Y. Wei, M. Westerterp, H. W. Snoeck, E. P. Papapetrou, C. Schulz, S. Massberg, O. Soehnlein, B. Ebert, R. L. Levine, M. P. Reilly, P. Libby, N. Wang, A. R. Tall, Nature 2021, 592, 296.

[41]

D. P. Del Re, D. Amgalan, A. Linkermann, Q. Liu, R. N. Kitsis, Physiol. Rev. 2019, 99, 1765.

[42]

B. Zhang, P. Yu, E. Su, J. Jia, C. Zhang, S. Xie, Z. Huang, Y. Dong, J. Ding, Y. Zou, H. Jiang, J. Ge, Curr. Pharm. Des. 2022, 28, 751.

[43]

Z. Xue, Y. Li, M. Zhou, Z. Liu, G. Fan, X. Wang, Y. Zhu, J. Yang, Front. Pharmacol. 2021, 12, 720873.

[44]

M. Shao, C. Ye, G. Bayliss, S. Zhuang, Front. Pharmacol. 2021, 12, 774414.

[45]

E. T. Chouchani, V. R. Pell, E. Gaude, D. Aksentijević, S. Y. Sundier, E. L. Robb, A. Logan, S. M. Nadtochiy, E. N. J. Ord, A. C. Smith, F. Eyassu, R. Shirley, C. H. Hu, A. J. Dare, A. M. James, S. Rogatti, R. C. Hartley, S. Eaton, A. S. H. Costa, P. S. Brookes, S. M. Davidson, M. R. Duchen, K. Saeb-Parsy, M. J. Shattock, A. J. Robinson, L. M. Work, C. Frezza, T. Krieg, M. P. Murphy, Nature 2014, 515, 431.

[46]

X. Liao, X. Yang, H. Deng, Y. Hao, L. Mao, R. Zhang, W. Liao, M. Yuan, Front. Bioeng. Biotechnol. 2020, 8, 251.

[47]

Y. Chen, J. Shi, Y. Zhang, J. Miao, Z. Zhao, X. Jin, L. Liu, L. Yu, C. Shen, J. Ding, J. Mater. Chem. B 2020, 8, 980.

[48]

Z. Zheng, Y. Tan, Y. Li, Y. Liu, G. Yi, C. Y. Yu, H. Wei, J. Control. Release 2021, 335, 216.

[49]

S. McLaughlin, V. Sedlakova, Q. Zhang, B. McNeill, D. Smyth, R. Seymour, D. R. Davis, M. Ruel, M. Brand, E. I. Alarcon, E. J. Suuronen, Adv. Funct. Mater. 2022, 32, 2204076.

[50]

S. Somekawa, A. Mahara, K. Masutani, Y. Kimura, H. Urakawa, T. Yamaoka, Tissue Eng. Regen. Med. 2017, 14, 507.

[51]

R. Bao, B. Tan, S. Liang, N. Zhang, W. Wang, W. Liu, Biomaterials 2017, 122, 63.

Energy & Environmental Materials
Article number: e12555
Cite this article:
Yu L, Liang Y, Gao L, et al. Reconstruction of Postinfarcted Cardiac Functions Through Injection of Tanshinone IIA@ Reactive Oxygen Species-Sensitive Microspheres Encapsulated in a Thermoreversible Hydrogel. Energy & Environmental Materials, 2024, 7(2): e12555. https://doi.org/10.1002/eem2.12555
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return