PDF (5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Enhanced High-Temperature Energy Storage Performance of All-Organic Composite Dielectric via Constructing Fiber-Reinforced Structure

Mengjia Feng1,2Yu Feng1,2 ()Changhai Zhang1,2Tiandong Zhang1,2Xu Tong1,2Qiang Gao1,2Qingguo Chen1,2Qingguo Chi1,2()
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
Show Author Information

Abstract

Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems. Selecting a polymer with a higher glass transition temperature (Tg) as the matrix is one of the effective ways to increase the upper limit of the polymer operating temperature. However, current high-Tg polymers have limitations, and it is difficult to meet the demand for high-temperature energy storage dielectrics with only one polymer. For example, polyetherimide has high-energy storage efficiency, but low breakdown strength at high temperatures. Polyimide has high corona resistance, but low high-temperature energy storage efficiency. In this work, combining the advantages of two polymer, a novel high-Tg polymer fiber-reinforced microstructure is designed. Polyimide is designed as extremely fine fibers distributed in the composite dielectric, which will facilitate the reduction of high-temperature conductivity loss for polyimide. At the same time, due to the high-temperature resistance and corona resistance of polyimide, the high-temperature breakdown strength of the composite dielectric is enhanced. After the polyimide content with the best high-temperature energy storage characteristics is determined, molecular semiconductors (ITIC) are blended into the polyimide fibers to further improve the high-temperature efficiency. Ultimately, excellent high-temperature energy storage properties are obtained. The 0.25 vol% ITIC-polyimide/polyetherimide composite exhibits high-energy density and high discharge efficiency at 150 ℃ (2.9 J cm−3, 90%) and 180 ℃ (2.16 J cm−3, 90%). This work provides a scalable design idea for high-performance all-organic high-temperature energy storage dielectrics.

Electronic Supplementary Material

Download File(s)
eem-7-2-e12571_ESM.docx (11.8 MB)

References

[1]

X. Wu, X. Chen, Q. M. Zhang, D. Q. Tan, Energy Storage Mater. 2022, 44, 29.

[2]

P. Wang, L. Yao, Z. Pan, S. Shi, J. Yu, Y. Zhou, Y. Liu, J. Liu, Q. Chi, J. Zhai, Q. Wang, Adv. Mater. 2021, 33, e2103338.

[3]

G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A. Feteira, D. Zhou, D. Wang, S. Zhang, I. M. Reaney, Chem. Rev. 2021, 121, 6124.

[4]

M. Feng, Y. Feng, T. Zhang, J. Li, Q. Chen, Q. Chi, Q. Lei, Adv. Sci. 2021, 8, e2102221.

[5]

M. Feng, C. Zhang, G. Zhou, T. Zhang, Y. Feng, Q. Chi, Q. Lei, IEEE Access 2020, 8, 81542.

[6]

M. Feng, Q. Chi, Y. Feng, Y. Zhang, T. Zhang, C. Zhang, Q. Chen, Q. Lei, Compos. Part B Eng. 2020, 198, 108206.

[7]

C. Wang, G. He, S. Chen, D. Zhai, H. Luo, D. Zhang, J. Mater. Chem. A 2021, 9, 8674.

[8]

H. Chen, Z. Pan, Y. Cheng, X. Ding, J. Liu, Q. Chi, M. Yang, J. Yu, Z.-M. Dang, J. Mater. Chem. A 2022, 10, 1579.

[9]

M. Feng, T. Zhang, C. Song, C. Zhang, Y. Zhang, Y. Feng, Q. Chi, Q. Chen, Q. Lei, Polymers 2020, 12, 1972.

[10]

K. Yin, J. Zhang, Z. Li, J. Feng, C. Zhang, X. Chen, A. Olah, D. E. Schuele, L. Zhu, E. Baer, J. Appl. Polym. Sci. 2019, 136, 47535.

[11]

Q. Li, F.-Z. Yao, Y. Liu, G. Zhang, H. Wang, Q. Wang, Annu. Rev. Mater. Res. 2018, 48, 219.

[12]

D. Q. Tan, Adv. Funct. Mater. 2019, 30, 1808567.

[13]

R. Guo, H. Luo, M. Yan, X. Zhou, K. Zhou, D. Zhang, Nano Energy 2021, 79, 105412.

[14]

H. Hu, F. Zhang, S. Luo, W. Chang, J. Yue, C.-H. Wang, Nano Energy 2020, 74, 104844.

[15]

J. Jiang, Z. Shen, J. Qian, Z. Dan, M. Guo, Y. He, Y. Lin, C.-W. Nan, L. Chen, Y. Shen, Nano Energy 2019, 62, 220.

[16]

T. Zhang, X. Zhao, C. Zhang, Y. Zhang, Y. Zhang, Y. Feng, Q. Chi, Q. Chen, Chem. Eng. J. 2021, 408, 127314.

[17]

Y. Cui, X. Wang, T. Zhang, C. Zhang, Q. Chi, RSC Adv. 2019, 9, 33229.

[18]

Q. Li, F. Liu, T. Yang, M. R. Gadinski, G. Zhang, L. Q. Chen, Q. Wang, Proc. Natl. Acad. Sci. USA 2016, 113, 9995.

[19]

Q. Chi, Z. Gao, T. Zhang, C. Zhang, Y. Zhang, Q. Chen, X. Wang, Q. Lei, ACS Sustain. Chem. Eng. 2018, 7, 748.

[20]

Y. Wang, Z. Li, C. Wu, Y. Cao, Chem. Eng. J. 2020, 401, 126093.

[21]

J. Li, X. Liu, Y. Feng, J. Yin, Prog. Polym. Sci. 2022, 126, 101505.

[22]

G. Liu, T. Zhang, Y. Feng, Y. Zhang, C. Zhang, Y. Zhang, X. Wang, Q. Chi, Q. Chen, Q. Lei, Chem. Eng. J. 2020, 389, 124443.

[23]

Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, U. Li, E. Iagodkine, A. Haque, L. Q. Chen, N. Jackson, Q. Wang, Nature 2015, 523, 576.

[24]

Y. Zhou, Q. Li, B. Dang, Y. Yang, T. Shao, H. Li, J. Hu, R. Zeng, J. He, Q. Wang, Adv. Mater. 2018, 30, e1805672.

[25]

A. Azizi, M. R. Gadinski, Q. Li, M. A. AlSaud, J. Wang, Y. Wang, B. Wang, F. Liu, L. Q. Chen, N. Alem, Q. Wang, Adv. Mater. 2017, 29, 1701864.

[26]

J. Dong, R. Hu, X. Xu, J. Chen, Y. Niu, F. Wang, J. Hao, K. Wu, Q. Wang, H. Wang, Adv. Funct. Mater. 2021, 31, 2102644.

[27]

G. Liu, Y. Feng, T. Zhang, C. Zhang, Q. Chi, Y. Zhang, Y. Zhang, Q. Lei, J. Mater. Chem. A 2021, 9, 16384.

[28]

Y. Cui, Y. Feng, T. Zhang, C. Zhang, Q. Chi, Y. Zhang, X. Wang, Q. Chen, Q. Lei, ACS Appl. Mater. Interfaces 2020, 12, 56424.

[29]

H. Li, M. R. Gadinski, Y. Huang, L. Ren, Y. Zhou, D. Ai, Z. Han, B. Yao, Q. Wang, Energy Environ. Sci. 2020, 13, 1279.

[30]

J. Chen, Y. Wang, Q. Yuan, X. Xu, Y. Niu, Q. Wang, H. Wang, Nano Energy 2018, 54, 288.

[31]

C. Yuan, Y. Zhou, Y. Zhu, J. Liang, S. Wang, S. Peng, Y. Li, S. Cheng, M. Yang, J. Hu, B. Zhang, R. Zeng, J. He, Q. Li, Nat. Commun. 2020, 11, 3919.

[32]

A. A. Deshmukh, C. Wu, O. Yassin, A. Mishra, L. Chen, A. Alamri, Z. Li, J. Zhou, Z. Mutlu, M. Sotzing, P. Rajak, S. Shukla, J. Vellek, M. A. Baferani, M. Cakmak, P. Vashishta, R. Ramprasad, Y. Cao, G. Sotzing, Energy Environ. Sci. 2022, 15, 1307.

[33]

Z. Dai, Z. Bao, S. Ding, C. Liu, H. Sun, H. Wang, X. Zhou, Y. Wang, Y. Yin, X. Li, Adv. Mater. 2021, 34, e2101976.

[34]

B. Gao, G. Wu, J. Cao, P. Wang, Y. Luo, High Volt. Eng. 2013, 39, 2882.

[35]

Q. Zhang, X. Chen, B. Zhang, T. Zhang, W. Lu, Z. Chen, Z. Liu, S. Kim, B. Donovan, R. Warzoha, E. Gomez, J. Bernholc, Q. Zhang, Matter 2021, 4, 2448.

[36]

H. Li, Y. Zhou, Y. Liu, L. Li, Y. Liu, Q. Wang, Chem. Soc. Rev. 2021, 11, 6369.

[37]

J. Ho, S. Greenbaum, ACS Appl. Mater. Interfaces 2018, 10, 29189.

[38]

D. Ai, H. Li, Y. Zhou, L. Ren, Z. Han, B. Yao, W. Zhou, L. Zhao, J. Xu, Q. Wang, Adv. Energy Mater. 2020, 10, 1903881.

[39]

W. Ren, M. Yang, L. Zhou, Y. Fan, S. He, J. Pan, T. Tang, Y. Xiao, C. Nan, Y. Shen, Adv. Mater. 2022, 34, 2207421.

[40]

L. Ren, L. Yang, S. Zhang, H. Li, Y. Zhou, D. Ai, Z. Xie, X. Zhao, Z. Peng, R. Liao, Q. Wang, Compos. Sci. Technol. 2021, 201, 108528.

[41]

M. O. Aijaz, M. R. Karim, H. F. Alharbi, N. H. Alharthi, Polymer 2019, 180, 121665.

[42]

Y. Feng, Y. Zhou, T. Zhang, C. Zhang, Y. Zhang, Y. Zhang, Q. Chen, Q. Chi, Energy Storage Mater. 2020, 25, 180.

[43]

C. Chen, J. Xing, Y. Cui, C. Zhang, Y. Feng, Y. Zhang, T. Zhang, Q. Chi, X. Wang, Q. Lei, J. Phys. Chem. C 2020, 124, 5920.

[44]

M. Feng, Y. Feng, Z. Yang, T. Zhang, Q. Chi, Q. Lei, Appl. Phys. Lett. 2021, 119, 132904.

[45]

S.-H. Hsiao, H.-M. Wang, P.-C. Chang, Y.-R. Kung, T.-M. Lee, J. Polym. Sci. Pol. Chem. 2013, 51, 2925.

[46]

Z. Ying, W. Chen, Y. Lin, Z. He, T. Chen, Y. Zhu, X. Zhang, X. Yang, A. B. Djurišić, Z. He, Adv. Opt. Mater. 2018, 7, 1801409.

[47]

Y. Yang, J. He, G. Wu, J. Hu, Sci. Rep. 2015, 5, 16986.

[48]

Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 2015, 27, 1170.

[49]

B. C. Thompson, J. M. Frechet, Angew. Chem. Int. Ed. Engl. 2008, 47, 58.

[50]

W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, J. Am. Chem. Soc. 2017, 139, 7148.

[51]

W. Jiang, L. Ye, X. Li, C. Xiao, F. Tan, W. Zhao, J. Hou, Z. Wang, Chem. Commun. 2014, 50, 1024.

[52]

Y. Yang, Z. G. Zhang, H. Bin, S. Chen, L. Gao, L. Xue, C. Yang, Y. Li, J. Am. Chem. Soc. 2016, 138, 15011.

[53]

W. Xu, J. Liu, T. Chen, X. Jiang, X. Qian, Y. Zhang, Z. Jiang, Y. Zhang, Small 2019, 15, e1901582.

[54]

J. Liu, Z. Shen, W. Xu, Y. Zhang, X. Qian, Z. Jiang, Y. Zhang, Small 2020, 16, e2000714.

[55]

W. Ren, J. Pan, Z. Dan, T. Zhang, J. Jiang, M. Fan, P. Hu, M. Li, Y. Lin, C. Nan, Y. Shen, Chem. Eng. J. 2021, 420, 127614.

[56]

Z. Zhang, D. Wang, M. Litt, L. Tan, L. Zhu, Angew. Chem. Int. Ed. Engl. 2018, 57, 1528.

[57]

C. Wu, A. Deshmukh, Z. Li, L. Chen, A. Alamri, Y. Wang, R. Ramprasad, G. Sotzing, Y. Cao, Adv. Mater. 2020, 32, 2000499.

[58]

Q. Feng, D. Liu, Y. Zhang, J. Pei, S. Zhong, H. Hu, X. Wang, Z. Dang, Nano Energy 2022, 99, 107410.

[59]

J. Pan, K. Li, S. Chuayprakong, T. Hsu, Q. Wang, ACS Appl. Mater. Interfaces 2010, 2, 1286.

Energy & Environmental Materials
Article number: e12571
Cite this article:
Feng M, Feng Y, Zhang C, et al. Enhanced High-Temperature Energy Storage Performance of All-Organic Composite Dielectric via Constructing Fiber-Reinforced Structure. Energy & Environmental Materials, 2024, 7(2): e12571. https://doi.org/10.1002/eem2.12571
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return