PDF (1.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Trace Cobalt Doping and Defect Engineering of High Surface Area α-Ni(OH)2 for Electrocatalytic Urea Oxidation

Yi Liu1Zhihui Yang1()Yuqin Zou2Shuangyin Wang2()Junying He1 ()
School of Metallurgy and Environment, Central South University, Changsha 410083, China
State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Show Author Information

Abstract

Owing to the intrinsically sluggish kinetics of urea oxidation reaction (UOR) involving a six-electron transfer process, developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed. Herein, by taking advantage of 2-Methylimidazole, of which is a kind of alkali in water and owns strong coordination ability to Co2+ in methanol, trace Co (1.0 mol%) addition was found to induce defect engineering on α-Ni(OH)2 in a dual-solvent system of water and methanol. Physical characterization results revealed that the synthesized electrocatalyst (WM-Ni0.99Co0.01(OH)2) was a kind of defective nanosheet with thickness around 5–6 nm, attributing to the synergistic effect of Co doping and defect engineering, its electron structure was finely altered, and its specific surface area was tremendously enlarged from 68 to 172.3 m2 g−1. With all these merits, its overpotential to drive 10 mA cm−2 was reduced by 110 mV. Besides, the interfacial behavior of UOR was also well deciphered by operando electrochemical impedance spectroscopy.

Electronic Supplementary Material

Download File(s)
eem-7-2-e12576_ESM.docx (9.1 MB)

References

[1]

S.-K. Geng, Y. Zheng, S.-Q. Li, H. Su, X. Zhao, J. Hu, H.-B. Shu, M. Jaroniec, P. Chen, Q.-H. Liu, S.-Z. Qiao, Nat. Energy 2021, 6, 904.

[2]

K. Kempa, U. Moslener, O. Schenker, Nat. Energy 2021, 6, 135.

[3]

J. He, W. Chen, H. Gao, Y. Chen, L. Zhou, Y. Zou, R. Chen, L. Tao, X. Lu, S. Wang, Chem. Catalysis 2022, 2, 578.

[4]

E. T. Sayed, T. Eisa, H. O. Mohamed, M. A. Abdelkareem, A. Allagui, H. Alawadhi, K.-J. Chae, J. Power Sources 2019, 417, 159.

[5]

J. Li, J. Li, T. Liu, L. Chen, Y. Li, H. Wang, X. Chen, M. Gong, Z. P. Liu, X. Yang, Angew. Chem. 2021, 133, 26860.

[6]

B. Zhu, Z. Liang, R. Zou, Small 2020, 16, 1906133.

[7]

S. Huang, Q. Zhang, P. Xin, J. Zhang, Q. Chen, J. Fu, Z. Jin, Q. Wang, Z. Hu, Small 2022, 18, 2106841.

[8]

V. Vedharathinam, G. G. Botte, Electrochim. Acta 2013, 108, 660.

[9]

C. Lin, Z. Gao, F. Zhang, J. Yang, B. Liu, J. Jin, J. Mater. Chem. A 2018, 6, 13867.

[10]

N. Senthilkumar, G. Gnana kumar, A. Manthiram, Adv. Energy Mater. 2018, 8, 1702207.

[11]

R. P. Forslund, J. T. Mefford, W. G. Hardin, C. T. Alexander, K. P. Johnston, K. J. Stevenson, ACS Catal. 2016, 6, 5044.

[12]

Y. Tong, P. Chen, M. Zhang, T. Zhou, L. Zhang, W. Chu, C. Wu, Y. Xie, ACS Catal. 2017, DOI: 10.1021/acscatal.7b03177.

[13]

L. Wang, Y. Zhu, Y. Wen, S. Li, C. Cui, F. Ni, Y. Liu, H. Lin, Y. Li, H. Peng, Angew. Chem. 2021, 133, 10671.

[14]

Y. Ding, Y. Li, Y. Xue, B. Miao, S. Li, Y. Jiang, X. Liu, Y. Chen, Nanoscale 2019, 11, 1058.

[15]

S. Periyasamy, P. Subramanian, E. Levi, D. Aurbach, A. Gedanken, A. Schechter, ACS Appl. Mater. Interfaces 2016, 8, 12176.

[16]

Z. Ji, Y. Song, S. Zhao, Y. Li, J. Liu, W. Hu, ACS Catal. 2021, 12, 569.

[17]

G. Wang, K. Ye, J. Shao, Y. Zhang, K. Zhu, K. Cheng, J. Yan, G. Wang, D. Cao, Int. J. Hydrogen Energy 2018, 43, 9316.

[18]

S. Wang, L. Zhao, J. Li, X. Tian, X. Wu, L. Feng, J. Energy Chem. 2022, 66, 483.

[19]

J. Li, S. Wang, S. Sun, X. Wu, B. Zhang, L. Feng, J. Mater. Chem. A 2022, 10, 9308.

[20]

X. Zhu, X. Dou, J. Dai, X. An, Y. Guo, L. Zhang, S. Tao, J. Zhao, W. Chu, X. C. Zeng, C. Wu, Y. Xie, Angew. Chem. 2016, 55, 12465.

[21]

M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, Y. Yan, J. Am. Chem. Soc. 2014, 136, 7077.

[22]

S. Jahangiri, N. J. Mosey, Phys. Chem. Chem. Phys. 2018, 20, 11444.

[23]

M. J. Eslamibidgoli, A. Gross, M. Eikerling, Phys. Chem. Chem. Phys. 2017, 19, 22659.

[24]

J. He, Y. Zou, Y. Huang, C. Li, Y. Liu, L. Zhou, C.-L. Dong, X. Lu, S. Wang, SCIENCE CHINA Chem. 2020, 63, 1684.

[25]

T.-H. Wu, B.-W. Hou, Cat. Sci. Technol. 2021, 11, 4294.

[26]

Y. Zhang, Y. Zhao, W. An, L. Xing, Y. Gao, J. Liu, J. Mater. Chem. A 2017, 5, 10039.

[27]

L. Zhang, L. Wang, H. Lin, Y. Liu, J. Ye, Y. Wen, A. Chen, L. Wang, F. Ni, Z. Zhou, S. Sun, Y. Li, B. Zhang, H. Peng, Angew. Chem. Int. Ed. 2019, 58, 16820.

[28]

J. Xie, W. Liu, X. Zhang, Y. Guo, L. Gao, F. Lei, B. Tang, Y. Xie, ACS Mater. Lett. 2019, 1, 103.

[29]

J.-H. Yang, X. Song, X. Zhao, Y. Wang, Y. Yang, L. Gao, Int. J. Hydrogen Energy 2019, 44, 16305.

[30]

J. He, Y. Zou, S. Wang, Dalton Trans. 2018, 48, 15.

[31]

B. Zhang, J. Zhang, X. Tan, D. Tan, J. Shi, F. Zhang, L. Liu, Z. Su, B. Han, L. Zheng, J. Zhang, Chem. Commun. 2018, 54, 4045.

[32]

J. Xie, X. Zhang, H. Zhang, J. Zhang, S. Li, R. Wang, B. Pan, Y. Xie, Adv. Mater. 2017, 29, 1604765.

[33]

Q. Yao, B. Huang, N. Zhang, M. Sun, Q. Shao, X. Huang, Angew. Chem. 2019, 58, 13983.

[34]

M. Zhao, Y. Gu, W. Gao, P. Cui, H. Tang, X. Wei, H. Zhu, G. Li, S. Yan, X. Zhang, Z. Zou, Appl. Catal. Environ. 2020, 266, 118625.

[35]

K. Chu, F. Liu, J. Zhu, H. Fu, H. Zhu, Y. Zhu, Y. Zhang, F. Lai, T. Liu, Adv. Energy Mater. 2021, 11, 2003799.

[36]

X. Yu, J. Zhao, L.-R. Zheng, Y. Tong, M. Zhang, G. Xu, C. Li, J. Ma, G. Shi, ACS Energy Lett. 2017, 3, 237.

[37]

X. Ge, C. D. Gu, X. L. Wang, J. P. Tu, J. Mater. Chem. A 2014, 2, 17066.

[38]

Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng, J. Tang, B. Kong, W.-B. Cai, Z. Yang, G. Zheng, Adv. Energy Mater. 2014, 4, 1400696.

[39]

Y. Qi, Y. Zhang, L. Yang, Y. Zhao, Y. Zhu, H. Jiang, C. Li, Nat. Commun. 2022, DOI: 10.1038/S41467-022-32443-5.

Energy & Environmental Materials
Article number: e12576
Cite this article:
Liu Y, Yang Z, Zou Y, et al. Trace Cobalt Doping and Defect Engineering of High Surface Area α-Ni(OH)2 for Electrocatalytic Urea Oxidation. Energy & Environmental Materials, 2024, 7(2): e12576. https://doi.org/10.1002/eem2.12576
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return