PDF (4.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Achieving Synergistic Improvement in Dielectric and Energy Storage Properties of All-Organic Poly(Methyl Methacrylate)-Based Copolymers Via Establishing Charge Traps

Guanghu He1Huang Luo1Chuanfang Yan1Yuting Wan2Dang Wu3Hang Luo2()Yuan Liu2Sheng Chen1 ()
Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Guangdong University of Petrochemical Technology, Maoming 525000, China
Show Author Information

Abstract

How to achieve synergistic improvement of permittivity (εr) and breakdown strength (Eb) is a huge challenge for polymer dielectrics. Here, for the first time, the π-conjugated comonomer (MHT) can simultaneously promote the εr and Eb of linear poly(methyl methacrylate) (PMMA) copolymers. The PMMA-based random copolymer films (P(MMA-co-MHT)), block copolymer films (PMMA-b-PMHT), and PMMA-based blend films were prepared to investigate the effects of sequential structure, phase separation structure, and modification method on dielectric and energy storage properties of PMMA-based dielectric films. As a result, the random copolymer P(MMA-co-MHT) can achieve a maximum εr of 5.8 at 1 kHz owing to the enhanced orientation polarization and electron polarization. Because electron injection and charge transfer are limited by the strong electrostatic attraction of π-conjugated benzophenanthrene group analyzed by the density functional theory (DFT), the discharge energy density value of P(MMA-co-PMHT) containing 1 mol% MHT units with the efficiency of 80% reaches 15.00 J cm−3 at 872 MV m−1, which is 165% higher than that of pure PMMA. This study provides a simple and effective way to fabricate the high performance of polymer dielectrics via copolymerization with the monomer of P-type semi-conductive polymer.

Electronic Supplementary Material

Download File(s)
eem-7-2-e12577_ESM1.docx (1.5 MB)
eem-7-2-e12577_ESM2.tif (994.7 KB)
eem-7-2-e12577_ESM3.tif (4 MB)
eem-7-2-e12577_ESM4.tif (4 MB)

References

[1]

J. S. Ho, S. G. Greenbaum, ACS Appl. Mater. Interfaces 2018, 10, 29189.

[2]

X. Hu, K. Yi, J. Liu, B. Chu, Energ. Technol. 2018, 6, 849.

[3]

X. Zhang, B.-W. Li, L. Dong, H. Liu, W. Chen, Y. Shen, C.-W. Nan, Adv. Mater. Interfaces 2018, 5, 1800096.

[4]

H. Luo, X. Zhou, C. Ellingford, Y. Zhang, S. Chen, K. Zhou, D. Zhang, C. R. Bowen, C. Wan, Chem. Soc. Rev. 2019, 48, 4424.

[5]

H. Li, Y. Zhou, Y. Liu, L. Li, Y. Liu, Q. Wang, Chem. Soc. Rev. 2021, 50, 6369.

[6]

H. Wu, F. Zhuo, H. Qiao, L. Kodumudi Venkataraman, M. Zheng, S. Wang, H. Huang, B. Li, X. Mao, Q. Zhang, Energy Environ. Mater. 2022, 5, 486.

[7]

B. Fan, M. Zhou, C. Zhang, D. He, J. Bai, Prog. Polym. Sci. 2019, 97, 231415.

[8]

J. Wei, L. Zhu, Prog. Polym. Sci. 2020, 106, 101254.

[9]

H. Xu, G. He, S. Chen, S. Chen, R. Qiao, H. Luo, D. Zhang, Macromolecules 2021, 54, 8195.

[10]

G. He, Z. Liu, C. Wang, S. Chen, H. Luo, D. Zhang, ACS Sustain. Chem. Eng. 2021, 9, 8156.

[11]

C. Ding, X. Tang, S. Yu, S. Chen, Z. Liu, H. Luo, D. Zhang, J. Mater. Chem. C 2022, 10, 6323.

[12]

S. Yu, C. Ding, Y. Liu, Y. Liu, Y. Zhang, H. Luo, D. Zhang, S. Chen, J. Power Sources 2022, 535, 231415.

[13]

X. Wu, X. Chen, Q. M. Zhang, D. Q. Tan, Energy Stor. Mater. 2022, 44, 29.

[14]

Q. K. Feng, S. L. Zhong, J. Y. Pei, Y. Zhao, D. L. Zhang, D. F. Liu, Y. X. Zhang, Z. M. Dang, Chem. Rev. 2022, 122, 3820.

[15]

J. Mao, S. Wang, Y. Cheng, B. Xiao, L. Zhang, D. Ai, Y. Chen, W. Sun, J. Luo, Chem. Eng. J. 2022, 444, 136331.

[16]

A. A. Deshmukh, C. Wu, O. Yassin, A. Mishra, L. Chen, A. Alamri, Z. Li, J. Zhou, Z. Mutlu, M. Sotzing, P. Rajak, S. Shukla, J. Vellek, M. A. Baferani, M. Cakmak, P. Vashishta, R. Ramprasad, Y. Cao, G. Sotzing, Energy Environ. Sci. 2022, 15, 1307.

[17]

L. Liu, K. Zhang, J. Liu, L. Zhu, R. Xie, S. Lv, React. Funct. Polym. 2022, 172, 105177.

[18]

H. Luo, S. Chen, L. Liu, X. Zhou, C. Ma, W. Liu, D. Zhang, ACS Sustain. Chem. Eng. 2018, 7, 3145.

[19]

S. Chen, X. Yan, W. Liu, R. Qiao, S. Chen, H. Luo, D. Zhang, Chem. Eng. J. 2020, 401, 126095.

[20]

Y. Yin, J. He, C. Zhang, J. Chen, J. Wu, Z. Shi, C. Xiong, Q. Yang, Cellulose 2021, 28, 1541.

[21]

Q. K. Feng, J. B. Ping, J. Zhu, J. Y. Pei, L. Huang, D. L. Zhang, Y. Zhao, S. L. Zhong, Z. M. Dang, Macromol. Rapid Commun. 2021, 42, e2100116.

[22]

A. Ahmad, H. Tong, T. Fan, J. Xu, J. Appl. Polym. Sci. 2021, 138, 50997.

[23]

R. Wang, H. Xu, S. Cheng, J. Liang, B. Gou, J. Zhou, J. Fu, C. Xie, J. He, Q. Li, Energy Stor. Mater. 2022, 49, 339.

[24]

K. Yang, W. Chen, Y. Zhao, Y. He, X. Chen, B. Du, W. Yang, S. Zhang, Y. Fu, ACS Appl. Mater. Interfaces 2021, 13, 25850.

[25]

M. Zhang, B. Zhu, X. Zhang, S. Tan, H. Gong, X. Wei, Z. Zhang, J. Mater. Chem. A 2022, 10, 16258.

[26]

Y. Su, Y. Huan, B. Peng, X. Wang, L. Wu, T. Wei, Chem. Eng. J. 2023, 452, 139316.

[27]

X. Du, Z. Li, T. Xu, J. Wang, S. Yan, L. Dong, Chem. Eng. J. 2020, 379, 122328.

[28]

C. Yuan, Y. Zhou, Y. Zhu, J. Liang, S. Wang, S. Peng, Y. Li, S. Cheng, M. Yang, J. Hu, B. Zhang, R. Zeng, J. He, Q. Li, Nat. Commun. 2020, DOI: 10.1038/s41467-020-17760-x.

[29]

Y. Zhang, R. Feng, Z. Chen, T. Zhao, Y. Ju, S. Yan, S. Song, G. Zhao, L. Dong, Eur. Polym. J. 2021, 152, 110486.

[30]

R. Qiao, H. Xu, S. Chen, S. Chen, H. Luo, D. Zhang, ACS Appl. Polym. Mater. 2021, 3, 879.

[31]

R. Qiao, C. Wang, S. Chen, G. He, Z. Liu, H. Luo, D. Zhang, Compos. Part A Appl. Sci. Manuf. 2022, 152, 106679.

[32]

Y. Zhang, F. Yan, S. Lao, X. Li, L. Dong, J. Mater. Sci. Mater. Electron. 2022, 33, 13850.

[33]

B. Luo, X. Wang, H. Wang, Z. Cai, L. Li, Compos. Sci. Technol. 2017, 151, 94.

[34]

X. Zhang, Y. Jiang, R. Gao, X. Li, Z. Shen, B.-W. Li, Q. Zhang, S. Zhang, C.-W. Nan, Sci. China Mater. 2021, 64, 1642.

[35]

Z. Dan, W. Ren, M. Guo, Z. Shen, T. Zhang, J. Jiang, C. Nan, Y. Shen, IET Nanodielectrics 2020, 3, 147.

[36]

Y. Jiang, J. Wang, S. Yan, Z. Shen, L. Dong, S. Zhang, X. Zhang, C. W. Nan, Adv. Funct. Mater. 2022, 32, 2200848.

[37]

F. Wen, C. Zhu, W. Lv, P. Wang, L. Zhang, L. Li, G. Wang, W. Wu, Z. Ying, X. Zheng, C. Han, W. Li, H. Zu, Z. Yue, ACS Omega 2021, 6, 35014.

[38]

S. Zhang, B. Neese, K. Ren, B. Chu, Q. M. Zhang, J. Appl. Phys. 2006, 100, 044113.

[39]

Q. Li, J. Liu, X. Zhang, S. Tan, J. Lu, Z. Zhang, Phys. Chem. Chem. Phys. 2019, 21, 15712.

[40]

H. Xu, S. Chen, S. Chen, R. Qiao, H. Li, H. Luo, D. Zhang, ACS Appl. Energy Mater. 2021, 4, 2451.

[41]

G. He, Y. Liu, C. Wang, S. Chen, H. Luo, D. Zhang, Chem. Eng. J. 2022, 446, 137106.

[42]

X. Tang, C. Din, S. Yu, Y. Liu, H. Luo, D. Zhang, S. Chen, Chem. Eng. J. 2022, 446, 137281.

[43]

K. Qian, R. Qiao, S. Chen, H. Luo, D. Zhang, J. Mater. Chem. C 2020, 8, 8440.

[44]

X.-H. Han, X.-W. Yang, S. Chen, H. Luo, D. Zhang, H.-L. Zhang, Chinese J. Polym. Sci. 2018, 36, 960.

[45]

Q. Li, S. Tan, H. Gong, J. Lu, W. Zhang, X. Zhang, Z. Zhang, Phys. Chem. Chem. Phys. 2021, 23, 3856.

[46]

C. Yuan, Y. Zhou, Y. Zhu, S. Hu, J. Liang, Z. Luo, B. Gao, T. Zeng, Y. Zhang, J. Li, S. Huang, Z. Han, X. Yang, Y. Yang, P. Meng, J. Hu, J. He, H. Yuan, Q. Li, ACS Sustain. Chem. Eng. 2022, 10, 8685.

[47]

J. Wei, Z. Zhang, J. K. Tseng, I. Treufeld, X. Liu, M. H. Litt, L. Zhu, ACS Appl. Mater. Interfaces 2015, 7, 5248.

[48]

B. Yang, P. Qu, X. Peng, X. Liu, Polym. Plast. Technol. Mat. 2018, 58, 1245.

[49]

J. Wei, T. Ju, W. Huang, J. Song, N. Yan, F. Wang, A. Shen, Z. Li, L. Zhu, Polymer 2019, 178, 121688.

[50]

Y. Zhu, C. Ma, H. Han, R. Sun, X. Liao, M. Xie, Polym. Chem. 2019, 10, 2447.

[51]

Y. Zhu, F. Ma, C. Ma, H. Han, R. Sun, H. Peng, M. Xie, Polymer 2019, 184, 121886.

[52]

F. Wen, L. Zhang, P. Wang, L. Li, J. Chen, C. Chen, W. Wu, G. Wang, S. Zhang, J. Mater. Chem. A 2020, 8, 15122.

[53]

J. Gong, C. Ma, Y. Quan, R. Sun, X. Liao, H. Peng, M. Xie, Polymer 2021, 231, 124127.

[54]

Y. Han, M. Shen, Y. Xu, L. Yang, Y. Xue, W. Tao, J. Mater. Sci. Mater. Electron. 2021, 32, 6249.

[55]

L.-J. Zhang, J. Liu, L.-B. Luo, X.-Y. Liu, X. Wang, Polymer 2022, 245, 124702.

[56]

R. Zhang, L. Li, S. Long, P. Wang, F. Wen, J. Yang, G. Wang, J. Mater. Chem. C 2022, 10, 3480.

[57]

W. Zheng, T. Yang, L. Qu, X. Liang, C. Liu, C. Qian, T. Zhu, Z. Zhou, C. Liu, S. Liu, Z. Chi, J. Xu, Y. Zhang, Chem. Eng. J. 2022, 436, 135060.

Energy & Environmental Materials
Article number: e12577
Cite this article:
He G, Luo H, Yan C, et al. Achieving Synergistic Improvement in Dielectric and Energy Storage Properties of All-Organic Poly(Methyl Methacrylate)-Based Copolymers Via Establishing Charge Traps. Energy & Environmental Materials, 2024, 7(2): e12577. https://doi.org/10.1002/eem2.12577
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return