AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (55.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

The Capture and Catalytic Conversion of CO2 by Dendritic Mesoporous Silica-Based Nanoparticles

Yabin Wang1,2Liangzhu Huang1 ( )Songwei Li3( )Chuntai Liu3 ( )Hua He2
College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China
Institute for Triazine Compounds & Hierarchical Porous Materials, Yan’an 716000, China
National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
Show Author Information

Abstract

Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores, which endows themselves with super-high specific surface area, extremely large pore volumes, especially accessible internal spaces, and so forth. Dissimilar guest species (such as organic groups or metal nanoparticles) could be readily decorated onto the interfaces of the channels and pores, realizing the functionalization of dendritic mesoporous silica nanoparticles for targeted applications. As adsorbents and catalysts, dendritic mesoporous silica nanoparticles-based materials have experienced nonignorable development in CO2 capture and catalytic conversion. This comprehensive review provides a critical survey on this pregnant subject, summarizing the designed construction of novel dendritic mesoporous silica nanoparticles-based materials, the involved chemical reactions (such as CO2 methanation, dry reforming of CH4), the value-added chemicals from CO2 (such as cyclic carbonates, 2-oxazolidinones, quinazoline-2,4(1H,3H)-diones), and so on. The adsorptive and catalytic performances have been compared with traditional silica mesoporous materials (such as SBA-15 or MCM-41), and the corresponding reaction mechanisms have been thoroughly revealed. It is sincerely expected that the in-depth discussion could give materials scientists certain inspiration to design brand-new dendritic mesoporous silica nanoparticles-based materials with superior capabilities towards CO2 capture, utilization, and storage.

Electronic Supplementary Material

Download File(s)
eem-7-2-e12593_ESM.docx (4 MB)

References

[1]

F. Wang, J. D. Harindintwali, Z. Yuan, M. Wang, F. Wang, S. Li, Z. Yin, L. Huang, Y. Fu, L. Li, S. X. Chang, L. Zhang, J. Rinklebe, Z. Yuan, Q. Zhu, L. Xiang, D. C. W. Tsang, L. Xu, X. Jiang, J. Liu, N. Wei, M. Kästner, Y. Zou, Y. S. Ok, J. Shen, D. Peng, W. Zhang, D. Barceló, Y. Zhou, Z. Bai, B. Li, B. Zhang, K. Wei, H. Cao, Z. Tan, L. B. Zhao, X. He, J. Zheng, N. Bolan, X. Liu, C. Huang, S. Dietmann, M. Luo, N. Sun, J. Gong, Y. Gong, F. Brahushi, T. Zhang, C. Xiao, X. Li, W. Chen, N. Jiao, J. Lehmann, Y. G. Zhu, H. Jin, A. Schäffer, J. M. Tiedje, J. M. Chen, Innovation 2021, 2, 100180.

[2]

E. Daneshvar, R. J. Wicker, P. L. Show, A. Bhatnagar, Chem. Eng. J. 2022, 427, 130884.

[3]

S. Chen, J. Liu, Q. Zhang, F. Teng, B. C. McLellan, Renew. Sust. Energ. Rev. 2022, 167, 112537.

[4]

Z. Z. Yang, L. N. He, Y. N. Zhao, B. Li, B. Yu, Energy Environ. Sci. 2011, 4, 3971.

[5]

S. Kar, A. Goeppert, G. K. S. Prakash, Acc. Chem. Res. 2019, 52, 2892.

[6]

G. Wang, Y. Guo, J. Yu, F. Liu, J. Sun, X. Wang, T. Wang, C. Zhao, Chem. Eng. J. 2022, 428, 132110.

[7]

S. Kumar, R. Srivastava, J. Koh, J. CO2 Util. 2020, 41, 101251.

[8]

N. Abuelnoor, A. AlHajaj, M. Khaleel, L. F. Vega, M. R. M. AbuZahra, Chemosphere 2021, 282, 131111.

[9]

I. Sreedhar, U. Upadhyay, P. Roy, S. M. Thodur, C. M. Patel, J. Clean. Prod. 2021, 284, 124712.

[10]

W. G. Cui, G. Y. Zhang, T. L. Hu, X. H. Bu, Coord. Chem. Rev. 2019, 387, 79.

[11]

S. Xiong, L. Li, L. Dong, J. Tang, G. Yu, C. Pan, J. CO2 Util. 2020, 41, 101224.

[12]

F. Li, F. Mocci, X. Zhang, X. Ji, A. Laaksonen, Chin. J. Chem. Eng. 2021, 31, 75.

[13]

T. P. Nguyen, D. M. Tuan Nguyen, D. L. Tran, H. K. Le, D. V. N. Vo, S. S. Lam, R. S. Varma, M. Shokouhimehr, C. C. Nguyen, Q. V. Le, Mol. Catal. 2020, 486, 110850.

[14]

L. Liu, S. Wang, H. Huang, Y. Zhang, T. Ma, Nano Energy 2020, 75, 104959.

[15]

W. Yuan, Y. Ma, H. Wu, L. Cheng, J. Energy Chem. 2022, 65, 254.

[16]

Y. Wang, B. Zhang, X. Ding, X. Du, Nano Today 2021, 39, 101231.

[17]

Y. Wang, X. Du, Z. Liu, S. Shi, H. Lv, J. Mater. Chem. A 2019, 7, 5111.

[18]

Y. Wang, J. Tao, Y. Wang, L. Huang, X. Ding, Appl. Surf. Sci. 2022, 574, 151702.

[19]

Y. Wang, J. He, M. Ahmad, B. Zhang, M. U. D. Naik, H. Xie, Q. Zhang, Chem. Eng. J. 2022, 442, 136220.

[20]

E. Febriyanti, N. Silmi, V. Suendo, R. R. Mukti, P. U. Vivitasari, D. R. Adhika, Y. Majima, Suprijadi, Ismunandar, Langmuir 2022, 38, 1368.

[21]

M. B. Bahari, S. N. Bukhari, L. N. Jun, H. D. Setiabudi, Mater. Today Proc. 2021, 42, 33.

[22]

M. H. Nia, M. Tavakolian, A. R. Kiasat, T. G. M. van de Ven, Langmuir 2020, 36, 11963.

[23]

S. Zhang, Y. Qian, W. S. Ahn, Chin. J. Catal. 2019, 40, 1704.

[24]

H. Li, H. Guo, C. Lei, L. Liu, L. Xu, Y. Feng, J. Ke, W. Fang, H. Song, C. Xu, C. Yu, X. Long, Adv. Mater. 2019, 31, 1904535.

[25]

J. Hochstrasser, E. Juère, F. Kleitz, W. Wang, C. Kübel, U. Tallarek, J. Colloid Interface Sci. 2021, 592, 296.

[26]

Y. Wang, J. He, Y. Shi, Y. Zhang, Microporous Mesoporous Mater. 2020, 305, 110326.

[27]

G. Ji, G. Zhu, X. Wang, Y. Wei, J. Yuan, C. Gao, Sep. Purif. Technol. 2017, 174, 455.

[28]

J. J. Davis, W. Y. Huang, G. L. Davies, J. Mater. Chem. 2012, 22, 22848.

[29]

C. Xu, C. Lei, Y. Wang, C. Yu, Angew. Chem. Int. Ed. 2022, 61, e202112752.

[30]

X. Du, S. Z. Qiao, Small 2015, 11, 392.

[31]

A. Maity, V. Polshettiwar, ChemSusChem 2017, 10, 3866.

[32]

J. He, J. Tao, Y. Wang, Y. Wang, X. Ding, ChemistrySelect 2022, 7, e202103081.

[33]

B. Singh, V. Polshettiwar, J. Mater. Chem. A 2016, 4, 7005.

[34]

A. Maity, R. Belgamwar, V. Polshettiwar, Nat. Protoc. 2019, 14, 2177.

[35]

K. Kole, S. Das, A. Samanta, S. Jana, Ind. Eng. Chem. Res. 2020, 59, 21393.

[36]

S. M. Sadeghzadeh, Green Chem. 2015, 17, 3059.

[37]

X. L. Xue, W. Z. Lang, X. Yan, Y. J. Guo, ACS Appl. Mater. Interfaces 2017, 9, 15408.

[38]

H. Peng, L. Xu, H. Wu, K. Zhang, P. Wu, Chem. Commun. 2013, 49, 2709.

[39]

J. Gao, W. Kong, L. Zhou, Y. He, L. Ma, Y. Wang, L. Yin, Y. Jiang, Chem. Eng. J. 2017, 309, 70.

[40]

B. Wang, Y. Wei, Q. Wang, J. Di, S. Miao, J. Yu, Mater. Chem. Front. 2020, 4, 2184.

[41]

A. F. A. Rahman, A. A. Jalil, C. N. C. Hitam, N. S. Hassan, M. Mohamed, H. U. Hambali, Mater. Today Proc. 2021, 42, 211.

[42]

V. Polshettiwar, Acc. Chem. Res. 2022, 55, 1395.

[43]

H. Peng, X. Zhang, X. Han, X. You, S. Lin, H. Chen, W. Liu, X. Wang, N. Zhang, Z. Wang, P. Wu, H. Zhu, S. Dai, ACS Catal. 2019, 9, 9072.

[44]

S. M. Sadeghzadeh, R. Z. M. Moradi, Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 535.

[45]

Y. Shi, J. Fu, Y. Yang, Microporous Mesoporous Mater. 2020, 294, 109914.

[46]

P. Hao, B. Peng, B. Q. Shan, T. Q. Yang, K. Zhang, Nanoscale Adv. 2020, 2, 1792.

[47]

Y. Han, W. S. W. Ho, Chin. J. Chem. Eng. 2018, 26, 2238.

[48]

A. A. Azmi, M. A. A. Aziz, J. Environ. Chem. Eng. 2019, 7, 103022.

[49]

X. E. Hu, Q. Yu, F. Barzagli, C. E. Li, M. Fan, K. A. M. Gasem, X. Zhang, E. Shiko, M. Tian, X. Luo, Z. Zeng, Y. Liu, R. Zhang, ACS Sustain. Chem. Eng. 2020, 8, 6173.

[50]

X. Hu, L. Liu, X. Luo, G. Xiao, E. Shiko, R. Zhang, X. Fan, Y. Zhou, Y. Liu, Z. Zeng, C. E. Li, Appl. Energy 2020, 260, 114244.

[51]

U. Patil, A. Fihri, A. H. Emwas, V. Polshettiwar, Chem. Sci. 2012, 3, 2224.

[52]

D. R. Radu, N. A. Pizzi, C. Y. Lai, J. Mater. Sci. 2016, 51, 10632.

[53]

S. A. Didas, A. R. Kulkarni, D. S. Sholl, C. W. Jones, ChemSusChem 2012, 5, 2058.

[54]

Y. G. Ko, S. S. Shin, U. S. Choi, J. Colloid Interface Sci. 2011, 361, 594.

[55]

M. Caplow, J. Am. Chem. Soc. 1968, 90, 6795.

[56]

J. Bahadur, S. Mehta, S. Singh, A. Das, A. Maity, T. Youngs, D. Sen, V. Polshettiwar, Mater. Adv. 2022, 3, 6506.

[57]

J. L. Blin, M. ImpérorClerc, Chem. Soc. Rev. 2013, 42, 4071.

[58]

K. AmannWinkel, M. C. BellissentFunel, L. E. Bove, T. Loerting, A. Nilsson, A. Paciaroni, D. Schlesinger, L. Skinner, Chem. Rev. 2016, 116, 7570.

[59]

S. Sarmad, J. P. Mikkola, X. Ji, ChemSusChem 2017, 10, 324.

[60]

A. Modak, S. Jana, Microporous Mesoporous Mater. 2019, 276, 107.

[61]

A. Hanif, M. Sun, Z. Tao, L. Liu, D. C. W. Tsang, Q. Gu, J. Shang, ACS Appl. Nano Mater. 2019, 2, 6565.

[62]

S. M. Yusof, R. Othaman, H. D. Setiabudi, L. P. Teh, J. Solid State Chem. 2021, 294, 121845.

[63]

M. L. Firmansyah, A. A. Jalil, S. Triwahyono, H. Hamdan, M. M. Salleh, F. W. A. Wan, G. T. M. Kadja, Catal. Sci. Technol. 2016, 2016, 5178.

[64]

D. P. Serrano, J. A. Melero, G. Morales, J. Iglesias, P. Pizarro, Catal. Rev. 2018, DOI: 10.1080/01614940.2017.1389109.

[65]

S. M. Yusof, Z. B. Pang, L. P. Teh, Mater. Today Proc. 2020, 31, 155.

[66]

H. U. Hambali, A. A. Jalil, S. Triwahyono, S. F. Jamian, N. A. A. Fatah, A. A. Abdulrasheed, T. J. Siang, Int. J. Hydrog. Energy 2021, 46, 24652.

[67]

H. U. Hambali, A. A. Jalil, A. A. Abdulrasheed, T. J. Siang, T. A. T. Abdullah, A. Ahmad, D. V. N. Vo, Int. J. Energy Res. 2020, 44, 5696.

[68]

A. Abdul Jalil, A. S. Zolkifli, S. Triwahyono, A. F. Abdul Rahman, N. N. Mohd Ghani, M. Y. Shahul Hamid, F. H. Mustapha, S. M. Izan, B. Nabgan, A. Ripin, Ind. Eng. Chem. Res. 2019, 58, 553.

[69]

F. F. A. Aziz, A. A. Jalil, S. Triwahyono, M. Mohamed, Appl. Surf. Sci. 2018, 455, 84.

[70]

A. E. Creamer, B. Gao, Environ. Sci. Technol. 2016, 50, 7276.

[71]

M. D. Hornbostel, J. Bao, G. Krishnan, A. Nagar, I. Jayaweera, T. Kobayashi, A. Sanjurjo, J. Sweeney, D. Carruthers, M. A. Petruska, L. Dubois, Carbon 2013, 56, 77.

[72]

B. Singh, A. Maity, V. Polshettiwar, ChemistrySelect 2018, 3, 10684.

[73]

M. I. F. Zainuddin, A. L. Ahmad, J. CO2 Util. 2022, 62, 102094.

[74]

M. Rezakazemi, A. Ebadi Amooghin, M. M. MontazerRahmati, A. F. Ismail, T. Matsuura, Prog. Polym. Sci. 2014, 39, 817.

[75]

S. Li, X. Jiang, H. Sun, S. He, L. Zhang, L. Shao, J. Membr. Sci. 2019, 586, 185.

[76]

Q. Liu, M. Luo, Z. Zhao, Q. Zhao, Chem. Eng. J. 2020, 380, 122423.

[77]

Y. Wu, J. Wang, Y. Zhu, X. Yu, Z. Shang, Y. Ding, A. Hu, Chem. Commun. 2021, 57, 4146.

[78]

C. Ngassam Tounzoua, B. Grignard, C. Detrembleur, Angew. Chem. Int. Ed. 2022, 61, e202116066.

[79]

Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933.

[80]

B. Yu, L. N. He, ChemSusChem 2015, 8, 52.

[81]

W. Guo, J. E. Gómez, À. Cristòfol, J. Xie, A. W. Kleij, Angew. Chem. Int. Ed. 2018, 57, 13735.

[82]

Q. W. Song, Z. H. Zhou, L. N. He, Green Chem. 2017, 19, 3707.

[83]

M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 2014, 114, 1709.

[84]

P. P. Pescarmona, Curr. Opin. Green Sustain. Chem. 2021, 29, 100457.

[85]

Z. Wang, R. Xie, H. Hong, L. Han, N. Zhu, J. CO2 Util. 2021, 51, 101644.

[86]

J. Zhang, M. Zhang, C. Yang, X. Wang, Adv. Mater. 2014, 26, 4121.

[87]

X. Xuan, S. Tu, H. Yu, X. Du, Y. Zhao, J. He, H. Dong, X. Zhang, H. Huang, Appl. Catal. B 2019, 255, 117768.

[88]

P. Zhang, R. Zhiani, Catal. Lett. 2020, 150, 2254.

[89]

M. Cui, F. Shamsa, Catal. Lett. 2022, 152, 87.

[90]

M. Abassian, R. Zhiani, A. Motavalizadehkakhky, H. Eshghi, J. Mehrzad, RSC Adv. 2020, 10, 15044.

[91]

J. Qiu, L. Yu, J. Ni, Z. Fei, W. Li, S. M. Sadeghzadeh, New J. Chem. 2020, 44, 1269.

[92]

Q. Yue, J. Li, W. Luo, Y. Zhang, A. A. Elzatahry, X. Wang, C. Wang, W. Li, X. Cheng, A. Alghamdi, A. M. Abdullah, Y. Deng, D. Zhao, J. Am. Chem. Soc. 2015, 137, 13282.

[93]

K. Yu, X. Zhang, H. Tong, X. Yan, S. Liu, Mater. Lett. 2013, 106, 151.

[94]

V. B. Saptal, R. Singh, G. Juneja, S. Singh, S. M. Chauhan, V. Polshettiwar, B. M. Bhanage, ChemCatChem 2021, 13, 2907.

[95]

S. M. Sadeghzadeh, R. Zhiani, S. Emrani, Appl. Organomet. Chem. 2018, 32, e3941.

[96]

S. M. Sadeghzadeh, J. Mol. Catal. A Chem. 2016, 423, 216.

[97]

S. M. Sadeghzadeh, Appl. Organomet. Chem. 2016, 30, 835.

[98]

S. M. Saadati, S. M. Sadeghzadeh, Catal. Lett. 2018, 148, 1692.

[99]

S. M. Sadeghzadeh, R. Zhiani, M. Moradi, ChemistrySelect 2018, 3, 3516.

[100]

J. Lu, H. Liu, T. Xu, F. Shamsa, Catal. Lett. 2021, 151, 281.

[101]

Z. He, P. Yu, Y. Zhao, H. Zhang, Y. Zhang, X. Kang, H. Zhang, S. M. Sadeghzadeh, Catal. Lett. 2021, 151, 1623.

[102]

V. Polshettiwar, D. Cha, X. Zhang, M. B. Jean, Angew. Chem. Int. Ed. 2010, 49, 9652.

[103]

J. Yang, W. Chen, D. Shen, Y. Wei, X. Ran, W. Teng, J. Fan, W. Zhang, D. Zhao, J. Mater. Chem. A 2014, 2, 11045.

[104]

Y. Sheng, H. Zeng, ACS Appl. Mater. Interfaces 2015, 7, 13578.

[105]

L. Lai, L. Zhang, C. Hu, M. Yang, J. Mater. Chem. A 2016, 4, 8610.

[106]

L. Feng, X. Li, C. Xu, S. M. Sadeghzadeh, Catal. Lett. 2020, 150, 1729.

[107]

L. Chang, R. Zhiani, S. M. Sadeghzadeh, RSC Adv. 2019, 9, 16955.

[108]

H. Asadi Zeydabadi, J. Mehrzad, A. Motavalizadehkakhky, R. Zhiani, Catal. Lett. 2021, 151, 582.

[109]

S. M. Sadeghzadeh, Catal. Sci. Technol. 2016, 6, 1435.

[110]

S. M. Sadeghzadeh, Catal. Commun. 2015, 72, 91.

[111]

C. Liu, S. M. Sadeghzadeh, Catal. Lett. 2021, 151, 2807.

[112]

J. Yang, L. Wang, A. Sun, R. Zhiani, Catal. Lett. 2021, 151, 573.

[113]

R. Zhiani, M. Khoobi, S. M. Sadeghzadeh, New J. Chem. 2018, 42, 10153.

[114]

Z. Wang, X. Li, L. Feng, B. Liu, F. Shamsa, Catal. Lett. 2021, 151, 1911.

[115]

I. B. Golovanov, S. M. Zhenodarova, I. G. Tsygankova, Russ. J. Gen. Chem. 2006, 76, 267.

[116]

X. Zheng, D. Wang, Z. Shuai, X. Zhang, J. Phys. Chem. B 2012, 116, 823.

[117]

S. Chen, J. Li, R. Haddad, S. M. Sadeghzadeh, J. CO2 Util. 2022, 61, 102035.

[118]

X. Wei, X. Wang, Inorganic Chem. Commun 2021, 128, 108590.

[119]

D. Huang, P. Zhao, D. Astruc, Coord. Chem. Rev. 2014, 272, 145.

[120]

C. Liu, J. Rouhi, RSC Adv. 2021, 11, 9933.

[121]

Y. Li, S. Song, S. M. Sadeghzadeh, Catal. Lett. 2023, 153, 95.

[122]

Q. Zhang, S. Zhang, Y. Deng, Green Chem. 2011, 13, 2619.

[123]

F. D. Bobbink, P. J. Dyson, J. Catal. 2016, 343, 52.

[124]

H. Wang, Z. Wang, J. Yang, C. Xu, Q. Zhang, Z. Peng, Macromol. Rapid Commun. 2018, 39, 1800246.

[125]

J. Tian, B. Ma, S. Bu, Q. Yuan, C. Zhao, Chem. Commun. 2018, 54, 13993.

[126]

A. Abdulrasheed, A. A. Jalil, Y. Gambo, M. Ibrahim, H. U. Hambali, M. Y. Shahul Hamid, Renew. Sust. Energ. Rev. 2019, 108, 175.

[127]

J. M. Ginsburg, J. Piña, T. El Solh, H. I. de Lasa, Ind. Eng. Chem. Res. 2005, 44, 4846.

[128]

M. S. Challiwala, M. M. Ghouri, P. Linke, M. M. ElHalwagi, N. O. Elbashir, J. CO2 Util. 2017, 17, 99.

[129]

B. C. Ekeoma, M. Yusuf, K. Johari, B. Abdullah, Int. J. Hydrog. Energy 2022, 47, 41596.

[130]

B. Abdullah, N. A. Abd Ghani, D. V. N. Vo, J. Clean. Prod. 2017, 162, 170.

[131]

X. Yu, B. Li, J. Wang, Z. Shang, D. Tian, G. Wang, A. Hu, Polym. Chem. 2022, 13, 4136.

[132]

Y. Wu, Y. Zhu, J. Wang, Z. Shang, H. Jin, Y. Ding, A. Hu, Chemistry 2022, 28, e202102979.

[133]

J. Meng, S. E, X. Wei, X. Chen, J. Wang, ACS Appl. Mater. Interfaces 2019, 11, 21150.

[134]

A. A. Abdulrasheed, A. A. Jalil, M. Y. S. Hamid, T. J. Siang, N. A. A. Fatah, S. M. Izan, N. S. Hassan, Int. J. Hydrog. Energy 2020, 45, 18549.

[135]

A. A. Abdulrasheed, A. A. Jalil, M. Y. S. Hamid, T. J. Siang, T. A. T. Abdullah, J. CO2 Util. 2020, 37, 230.

[136]

F. Zeng, J. Zhang, R. Xu, R. Zhang, J. Ge, Nano Res. 2022, 15, 5004.

[137]

V. Shanmugam, R. Zapf, S. Neuberg, V. Hessel, G. Kolb, Appl. Catal. B 2017, 203, 859.

[138]

C. C. Chong, S. N. Bukhari, Y. W. Cheng, H. D. Setiabudi, L. P. Teh, A. A. Jalil, Microporous Mesoporous Mater. 2020, 294, 109872.

[139]

C. C. Chong, H. D. Setiabudi, A. A. Jalil, Int. J. Hydrog. Energy 2020, 45, 18533.

[140]

C. C. Chong, S. N. Bukhari, Y. W. Cheng, H. D. Setiabudi, A. A. Jalil, C. Phalakornkule, Appl. Catal. A 2019, 584, 117174.

[141]

C. C. Chong, Y. W. Cheng, H. D. Setiabudi, N. Ainirazali, D. V. N. Vo, B. Abdullah, Int. J. Hydrog. Energy 2020, 45, 8507.

[142]

C. C. Chong, Y. W. Cheng, S. N. Bukhari, H. D. Setiabudi, A. A. Jalil, Catal. Today 2021, 375, 245.

[143]

H. U. Hambali, A. A. Jalil, A. A. Abdulrasheed, T. J. Siang, A. H. K. Owgi, F. F. A. Aziz, Chem. Eng. Sci. 2021, 231, 116320.

[144]

H. U. Hambali, A. A. Jalil, A. A. Abdulrasheed, T. J. Siang, B. B. Nyakuma, W. Nabgan, T. A. T. Abdullah, Chem. Eng. Sci. 2020, 227, 115952.

[145]

H. U. Hambali, A. A. Jalil, A. A. Abdulrasheed, T. J. Siang, D. V. N. Vo, J. Energy Inst. 2020, 93, 1535.

[146]

Z. Liu, X. Gao, B. Liu, Q. Ma, T. S. Zhao, J. Zhang, Fuel 2022, 321, 124115.

[147]

I. Hussain, G. Tanimu, S. Ahmed, C. U. Aniz, H. Alasiri, K. Alhooshani, Int. J. Hydrog. Energy, 2022, DOI: https://doi.org/10.1016/j.ijhydene.2022.08.086

[148]

L. Shi, G. Yang, K. Tao, Y. Yoneyama, Y. Tan, N. Tsubaki, Acc. Chem. Res. 2013, 46, 1838.

[149]

W. J. Lee, C. Li, H. Prajitno, J. Yoo, J. Patel, Y. Yang, S. Lim, Catal. Today 2021, 368, 2.

[150]

G. Prieto, ChemSusChem 2017, 10, 1056.

[151]

M. Y. S. Hamid, M. L. Firmansyah, S. Triwahyono, A. A. Jalil, R. R. Mukti, E. Febriyanti, V. Suendo, H. D. Setiabudi, M. Mohamed, W. Nabgan, Appl. Catal. A 2017, 532, 86.

[152]

V. Zeleňák, A. Zeleňáková, J. Kováč, Colloids Surf. A Physicochem. Eng. Asp. 2010, 357, 97.

[153]

A. K. Mishra, R. Belgamwar, R. Jana, A. Datta, V. Polshettiwar, Proc. Natl. Acad. Sci. USA 2020, 117, 6383.

[154]

C. Lv, L. Xu, M. Chen, Y. Cui, X. Wen, C. E. Wu, B. Yang, F. Wang, Z. Miao, X. Hu, Q. Shou, Fuel 2020, 278, 118333.

[155]

M. Y. Shahul Hamid, S. Triwahyono, A. A. Jalil, N. W. Che Jusoh, S. M. Izan, T. A. Tuan Abdullah, Inorg. Chem. 2018, 57, 5859.

[156]

M. Y. Shahul Hamid, A. Abdul Jalil, A. F. Abdul Rahman, T. A. Tuan Abdullah, React. Chem. Eng. 2019, 4, 1126.

[157]

S. N. Bukhari, C. C. Chong, H. D. Setiabudi, Y. W. Cheng, L. P. Teh, A. A. Jalil, Chem. Eng. Sci. 2021, 229, 116141.

[158]

I. Hussain, A. A. Jalil, N. S. Hassan, H. U. Hambali, N. W. C. Jusoh, Chem. Eng. Sci. 2020, 228, 115978.

[159]

I. Hussain, A. A. Jalil, S. M. Izan, M. S. Azami, K. Kidam, N. Ainirazali, A. Ripin, Chem. Eng. Sci. 2021, 229, 116015.

[160]

T. J. Siang, A. A. Jalil, N. A. A. Fatah, M. E. Chung, J. Environ. Chem. Eng. 2021, 9, 104616.

[161]

N. S. Hassan, A. A. Jalil, N. A. A. Fatah, I. Hussain, A. F. A. Rahman, S. A. M. Dolit, K. Kidam, R. Jusoh, M. A. A. Aziz, H. D. Setiabudi, C. K. Cheng, Int. J. Hydrog. Energy 2022, 47, 30896.

[162]

J. Liu, Y. Zhang, Y. Chen, Q. Liu, Mater. Today Nano 2022, 18, 100208.

[163]

Y. Liu, L. Tian, X. Tan, X. Li, X. Chen, Sci. Bull. 2017, 62, 431.

[164]

M. Marszewski, S. Cao, J. Yu, M. Jaroniec, Mater. Horiz. 2015, 2, 261.

[165]

H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Chem. Soc. Rev. 2014, 43, 5234.

[166]

Y. Wang, H. Ma, J. Guo, Y. Han, X. Ding, Y. Zhang, J. Mater. Sci. 2021, 56, 14659.

[167]

X. Wang, X. Xuan, Y. Wang, X. Li, H. Huang, X. Zhang, X. Du, Microporous Mesoporous Mater. 2021, 310, 110635.

[168]

S. A. Rawool, A. Samanta, T. G. Ajithkumar, Y. Kar, V. Polshettiwar, ACS Appl. Energy Mater 2020, 3, 8150.

[169]

Y. Wang, J. He, X. Li, Y. Shi, Y. Zhang, X. Ding, Appl. Surf. Sci. 2021, 538, 148147.

[170]

M. Dhiman, A. Maity, A. Das, R. Belgamwar, B. Chalke, Y. Lee, K. Sim, J. M. Nam, V. Polshettiwar, Chem. Sci. 2019, 10, 6594.

[171]

M. H. Alabsi, X. Wang, P. Zheng, A. Ramirez, A. Duan, C. Xu, K. W. Huang, Fuel 2022, 317, 123471.

[172]

X. Wang, M. H. Alabsi, P. Zheng, J. Mei, A. Ramirez, A. Duan, C. Xu, K. W. Huang, J. Colloid Interface Sci. 2022, 611, 739.

[173]

M. H. Alabsi, X. Chen, X. Wang, M. Zhang, A. Ramirez, A. Duan, C. Xu, L. Cavallo, K. W. Huang, J. Catal. 2022, 413, 751.

[174]

W. Zhang, Z. Jin, Z. Chen, Adv. Sci. 2022, 9, 2105204.

[175]

Q. J. Wu, J. Liang, Y. B. Huang, R. Cao, Acc. Chem. Res. 2022, 55, 2978.

[176]

N. F. Khusnun, A. A. Jalil, T. A. T. Abdullah, S. S. M. Latip, C. N. C. Hitam, A. A. Fauzi, N. S. Hassan, M. A. H. Aziz, A. F. A. Rahman, F. F. A. Aziz, M. Bahari, R. H. Adnan, R. Saravanan, J. CO2 Util. 2022, 58, 101901.

[177]

M. B. Bahari, C. R. Mamat, A. A. Jalil, L. S. Shing, N. S. Hassan, F. F. A. Aziz, M. Alhassan, M. G. M. Nawawi, K. Kidam, H. D. Setiabudi, Fuel 2022, 328, 125257.

[178]

H. M. A. Sharif, N. Mahmood, S. Wang, I. Hussain, Y. N. Hou, L. H. Yang, X. Zhao, B. Yang, Chemosphere 2021, 273, 129695.

[179]

H. Kitagishi, Q. Mao, Polym. J. 2022, 54, 465.

[180]

M. Sun, A. Hanif, T. Wang, C. Yang, D. C. W. Tsang, J. Shang, J. Hazard. Mater. 2021, 418, 126400.

[181]

M. A. Hanif, N. Ibrahim, K. Md Isa, T. A. Tuan Abdullah, A. Abdul Jalil, Mater. Today Proc. 2021, 47, 1323.

[182]

M. A. Hanif, N. Ibrahim, K. Md Isa, F. Muhammad Ridwan, T. A. Tuan Abdullah, A. A. Jalil, Microporous Mesoporous Mater. 2022, 330, 111610.

[183]

M. A. Hanif, N. Ibrahim, K. M. Isa, U. F. M. Ali, T. A. Tuan Abdullah, A. A. Jalil, J. Porous. Mater. 2022, 29, 501.

[184]

S. Tian, Q. Yang, S. Mohsen Sadeghzadeh, Inorg. Chem. Commun. 2021, 125, 108441.

[185]

L. P. Teh, S. Triwahyono, A. A. Jalil, M. L. Firmansyah, C. R. Mamat, Z. A. Majid, Appl. Catal. A 2016, 523, 200.

[186]

I. Hussain, A. A. Jalil, M. Y. S. Hamid, A. H. Khoja, M. Farooq, H. M. A. Sharif, N. S. Hassan, M. A. H. Aziz, W. Nabgan, Mol. Catal. 2022, 523, 112140.

[187]

Y. Luo, Y. Li, C. Wang, J. Wang, W. Liu, H. Peng, D. Wu, Processes 2022, 10, 145.

[188]

I. Munaweera, M. Trinh, J. Hong, K. J. Balkus, J. Nanosci. Nanotechnol. 2016, 16, 9063.

[189]

X. Du, C. Zhao, Y. Luan, C. Zhang, M. Jaroniec, H. Huang, X. Zhang, S. Qiao, J. Mater. Chem. A 2017, 5, 21560.

[190]

D. S. Moon, J. K. Lee, Langmuir 2014, 30, 15574.

[191]

W. Liu, M. Liu, X. Liu, X. Wang, H. X. Deng, M. Lei, Z. Wei, Z. Wei, Adv. Opt. Mater. 2020, 8, 1901631.

Energy & Environmental Materials
Article number: e12593
Cite this article:
Wang Y, Huang L, Li S, et al. The Capture and Catalytic Conversion of CO2 by Dendritic Mesoporous Silica-Based Nanoparticles. Energy & Environmental Materials, 2024, 7(2): e12593. https://doi.org/10.1002/eem2.12593

36

Views

0

Downloads

9

Crossref

11

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 15 October 2022
Revised: 28 December 2022
Published: 07 January 2023
© 2023 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return