PDF (5.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review | Open Access

High-Concentration Electrosynthesis of Formic Acid/Formate from CO2: Reactor and Electrode Design Strategies

Yizhu Kuang1Hesamoddin Rabiee1,2Lei Ge1,3()Thomas E. Rufford3Zhiguo Yuan2John Bell1Hao Wang1 ()
Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia
Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia
School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
Show Author Information

Abstract

The electrochemical CO2 reduction reaction (CO2RR), driven by renewable energy, provides a potential carbon-neutral avenue to convert CO2 into valuable fuels and feedstocks. Conversion of CO2 into formic acid/formate is considered one of the economical and feasible methods, owing to their high energy densities, and ease of distribution and storage. The separation of formic acid/formate from the reaction mixtures accounts for the majority of the overall CO2RR process cost, while the increment of product concentration can lead to the reduction of separation cost, remarkably. In this paper, we give an overview of recent strategies for highly concentrated formic acid/formate products in CO2RR. CO2RR is a complex process with several different products, as it has different intermediates and reaction pathways. Therefore, this review focuses on recent study strategies that can enhance targeted formic acid/formate yield, such as the all-solid-state reactor design to deliver a high concentration of products during the reduction of CO2 in the electrolyzer. Firstly, some novel electrolyzers are introduced as an engineering strategy to improve the concentration of the formic acid/formate and reduce the cost of downstream separations. Also, the design of planar and gas diffusion electrodes (GDEs) with the potential to deliver high-concentration formic acid/formate in CO2RR is summarized. Finally, the existing technological challenges are highlighted, and further research recommendations to achieve high-concentration products in CO2RR. This review can provide some inspiration for future research to further improve the product concentration and economic benefits of CO2RR.

References

[1]

J. P. Gattuso, A. Magnan, R. Billé, W. W. L. Cheung, E. L. Howes, F. Joos, D. Allemand, L. Bopp, S. R. Cooley, C. M. Eakin, O. Hoegh-Guldberg, R. P. Kelly, H. O. Pörtner, A. D. Rogers, J. M. Baxter, D. Laffoley, D. Osborn, A. Rankovic, J. Rochette, U. R. Sumaila, S. Treyer, C. Turley, Science 2015, 349, aac4722.

[2]

P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo, E. H. Sargent, Science 2019, 364, eaav3506.

[3]

S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie, Nature 2016, 529, 68.

[4]

F. Li, A. Thevenon, A. Rosas-Hernández, Z. Wang, Y. Li, C. M. Gabardo, A. Ozden, C. T. Dinh, J. Li, Y. Wang, J. P. Edwards, Y. Xu, C. McCallum, L. Tao, Z. Q. Liang, M. Luo, X. Wang, H. Li, C. P. O'Brien, C. S. Tan, D. H. Nam, R. Quintero-Bermudez, T. T. Zhuang, Y. C. Li, Z. Han, R. D. Britt, D. Sinton, T. Agapie, J. C. Peters, E. H. Sargent, Nature 2020, 577, 509.

[5]

C. T. Dinh, T. Burdyny, G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. Pelayo García De Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E. H. Sargent, Science 2018, 360, 783.

[6]

X. Duan, J. Xu, Z. Wei, J. Ma, S. Guo, S. Wang, H. Liu, S. Dou, Adv. Mater. 2017, DOI: https://doi.org/10.1002/adma.201701784.

[7]

Y. Li, A. Xu, Y. Lum, X. Wang, S. F. Hung, B. Chen, Z. Wang, Y. Xu, F. Li, J. Abed, J. E. Huang, A. S. Rasouli, J. Wicks, L. K. Sagar, T. Peng, A. H. Ip, D. Sinton, H. Jiang, C. Li, E. H. Sargent, Nat. Commun. 2020, DOI: https://doi.org/10.1038/s41467-020-20004-7.

[8]

G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Chem. Soc. Rev. 2021, 50, 4993.

[9]

J. M. Spurgeon, B. Kumar, Energy Environ. Sci. 2018, 11, 1536.

[10]

J. E. Huang, F. Li, A. Ozden, A. S. Rasouli, F. P. G. de Arquer, S. Liu, S. Zhang, M. Luo, X. Wang, Y. Lum, Y. Xu, K. Bertens, R. K. Miao, C. T. Dinh, D. Sinton, E. H. Sargent, Science, 2021, 372, 1074.

[11]

A. D. Handoko, H. Chen, Y. Lum, Q. Zhang, B. Anasori, Z. W. Seh, Nat. Catal. 2018, 1, 922.

[12]

S. C. Perry, P. ki Leung, L. Wang, C. Ponce de León, Curr. Opin. Electrochem. 2020, 20, 88.

[13]

R. Daiyan, W. H. Saputera, H. Masood, J. Leverett, X. Lu, R. Amal, Adv. Energy Mater. 2020, DOI: https://doi.org/10.1002/aenm.201902106.

[14]

W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S. Sun, J. Am. Chem. Soc. 2013, 135, 16833.

[15]

Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W. C. Cheong, Y. Wang, L. Zheng, J. Luo, Y. Lin, Y. Liu, C. Liu, J. Li, Q. Lu, X. Chen, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 2018, 140, 4218.

[16]

H. Zhong, M. Ghorbani-Asl, K. H. Ly, J. Zhang, J. Ge, M. Wang, Z. Liao, D. Makarov, E. Zschech, E. Brunner, I. M. Weidinger, J. Zhang, A. V. Krasheninnikov, S. Kaskel, R. Dong, X. Feng, Nat. Commun. 2020, DOI: https://doi.org/10.1038/s41467-020-15141-y.

[17]

L. Fan, C. Xia, P. Zhu, Y. Lu, H. Wang, Nat. Commun. 2020, DOI: https://doi.org/10.1038/s41467-020-17403-1.

[18]

T. Zheng, C. Liu, C. Guo, M. Zhang, X. Li, Q. Jiang, W. Xue, H. Li, A. Li, C. W. Pao, J. Xiao, C. Xia, J. Zeng, Nat. Nanotechnol. 2021, 16, 1386.

[19]

J. Zhang, T. Fan, P. Huang, X. Lian, Y. Guo, Z. Chen, X. Yi, Adv. Funct. Mater. 2022, DOI: https://doi.org/10.1002/adfm.202113075.

[20]

Q. H. Low, N. W. X. Loo, F. Calle-Vallejo, B. S. Yeo, Angew. Chem. Int. Ed. 2019, 58, 2256.

[21]

Y. Wu, Z. Jiang, X. Lu, Y. Liang, H. Wang, Nature 2019, 575, 639.

[22]

W. J. Teh, O. Piqué, Q. H. Low, W. Zhu, F. Calle-Vallejo, B. S. Yeo, ACS Catal. 2021, 11, 8467.

[23]

J. Albo, D. Vallejo, G. Beobide, O. Castillo, P. Castaño, A. Irabien, ChemSusChem 2017, 10, 1100.

[24]

X. Wang, Z. Wang, F. P. García de Arquer, C. T. Dinh, A. Ozden, Y. C. Li, D. H. Nam, J. Li, Y. S. Liu, J. Wicks, Z. Chen, M. Chi, B. Chen, Y. Wang, J. Tam, J. Y. Howe, A. Proppe, P. Todorović, F. Li, T. T. Zhuang, C. M. Gabardo, A. R. Kirmani, C. McCallum, S. F. Hung, Y. Lum, M. Luo, Y. Min, A. Xu, C. P. O'Brien, B. Stephen, B. Sun, A. H. Ip, L. J. Richter, S. O. Kelley, D. Sinton, E. H. Sargent, Nat. Energy 2020, 5, 478.

[25]

X. Bai, Q. Li, L. Shi, X. Niu, C. Ling, J. Wang, Small 2020, DOI: https://doi.org/10.1002/smll.201901981.

[26]

R. De, S. Gonglach, S. Paul, M. Haas, S. S. Sreejith, P. Gerschel, U. Apfel, T. H. Vuong, J. Rabeah, S. Roy, W. Schöfberger, Angew. Chem. 2020, 132, 10614.

[27]

D. Zang, Q. Li, G. Dai, M. Zeng, Y. Huang, Y. Wei, Appl. Catal. B Environ. 2021, 281, 119426.

[28]

Y. Wang, Z. Chen, P. Han, Y. Du, Z. Gu, X. Xu, G. Zheng, ACS Catal. 2018, 8, 7113.

[29]

X. Wang, A. Xu, F. Li, S. F. Hung, D. H. Nam, C. M. Gabardo, Z. Wang, Y. Xu, A. Ozden, A. S. Rasouli, A. H. Ip, D. Sinton, E. H. Sargent, J. Am. Chem. Soc. 2020, 142, 3525.

[30]

C. J. Chang, S. C. Lin, H. C. Chen, J. Wang, K. J. Zheng, Y. Zhu, H. M. Chen, J. Am. Chem. Soc. 2020, 142, 12119.

[31]

Y. Zhang, Q. Zhou, Z. Qiu, X. Zhang, J. Chen, Y. Zhao, W.-Y. Sun, Adv. Funct. Mater. 2022, 32, 2203677.

[32]

W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, F. Gong, Nat. Catal. 2020, 3, 478.

[33]

D. Meng, M. Zhang, D. Si, M. Mao, Y. Hou, Y. Huang, R. Cao, Angew. Chem. 2021, 133, 25689.

[34]

Y. Zhou, H. Qi, J. Wu, H. Huang, Y. Liu, Z. Kang, Adv. Funct. Mater. 2022, DOI: https://doi.org/10.1002/adfm.202113335.

[35]

X. An, S. Li, X. Hao, Z. Xie, X. Du, Z. Wang, X. Hao, A. Abudula, G. Guan, Renew. Sust. Energ. Rev. 2021, 143, 110952.

[36]

Z. W. She, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.

[37]

X. Cao, D. Tan, B. Wulan, K. S. Hui, K. N. Hui, J. Zhang, Small Methods 2021, DOI: https://doi.org/10.1002/smtd.202100700.

[38]

X. Wang, S. Feng, W. Lu, Y. Zhao, S. Zheng, W. Zheng, X. Sang, L. Zheng, Y. Xie, Z. Li, B. Yang, L. Lei, S. Wang, Y. Hou, Adv. Funct. Mater. 2021, DOI: https://doi.org/10.1002/adfm.202104243.

[39]

J. S. Yoo, R. Christensen, T. Vegge, J. K. Nørskov, F. Studt, ChemSusChem 2016, 9, 358.

[40]

M. F. Baruch, J. E. Pander, J. L. White, A. B. Bocarsly, ACS Catal. 2015, 5, 3148.

[41]

K. Lakshmanan, W. H. Huang, S. A. Chala, B. W. Taklu, E. A. Moges, J. F. Lee, P. Y. Huang, Y. C. Lee, M. C. Tsai, W. N. Su, B. J. Hwang, Adv. Funct. Mater. 2022, DOI: https://doi.org/10.1002/adfm.202109310.

[42]

R. Daiyan, X. Lu, Y. H. Ng, R. Amal, ChemSusChem 2017, 10, 4342.

[43]

S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev. 2019, 119, 7610.

[44]

R. Kortlever, J. Shen, K. J. P. Schouten, F. Calle-Vallejo, M. T. M. Koper, J. Phys. Chem. Lett. 2015, 6, 4073.

[45]

Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy 2019, 4, 732.

[46]

S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang, Y. Wu, Y. Chen, Nanomicro Lett. 2019, DOI: https://doi.org/10.1007/s40820-019-0293-x.

[47]

Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2019, 141, 7646.

[48]

L. Fan, C. Xia, F. Yang, J. Wang, H. Wang, Y. Lu, Sci. Adv. 2020, 6, 1.

[49]

S. Garg, M. Li, A. Z. Weber, L. Ge, L. Li, V. Rudolph, G. Wang, T. E. Rufford, J. Mater. Chem. A 2020, 8, 1511.

[50]

M. Li, S. Garg, X. Chang, L. Ge, L. Li, M. Konarova, T. E. Rufford, V. Rudolph, G. Wang, Small Methods 2020, 4, 2000033.

[51]

Y. Ma, J. Wang, J. Yu, J. Zhou, X. Zhou, H. Li, Z. He, H. Long, Y. Wang, P. Lu, J. Yin, H. Sun, Z. Zhang, Z. Fan, Matter 2021, 4, 888.

[52]

Q. Lu, F. Jiao, Nano Energy 2016, 29, 439.

[53]

Y. Quan, J. Zhu, G. Zheng, Small Sci. 2021, 1, 2100043.

[54]

H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa, X. Zou, Adv. Mater. 2020, 32, 2002423.

[55]

W. Lai, Z. Ma, J. Zhang, Y. Yuan, Y. Qiao, H. Huang, Adv. Funct. Mater. 2022, 32, 2204692.

[56]

B. Kumar, J. P. Brian, V. Atla, S. Kumari, K. A. Bertram, R. T. White, J. M. Spurgeon, Catal. Today 2016, 270, 19.

[57]

D. M. Weekes, D. A. Salvatore, A. Reyes, A. Huang, C. P. Berlinguette, Acc. Chem. Res. 2018, 51, 910.

[58]

G. M. Tomboc, S. Choi, T. Kwon, Y. J. Hwang, K. Lee, Adv. Mater. 2020, 32, e1908398.

[59]

D. V. Vasilyev, A. V. Rudnev, P. Broekmann, P. J. Dyson, ChemSusChem 2019, 12, 1635.

[60]

B. Deng, M. Huang, X. Zhao, S. Mou, F. Dong, ACS Catal. 2022, 12, 331.

[61]

J. Wang, J. Yu, M. Sun, L. Liao, Q. Zhang, L. Zhai, X. Zhou, L. Li, G. Wang, F. Meng, D. Shen, Z. Li, H. Bao, Y. Wang, J. Zhou, Y. Chen, W. Niu, B. Huang, L. Gu, C. S. Lee, Z. Fan, Small 2022, DOI: https://doi.org/10.1002/smll.202106766.

[62]

A. Reyes, R. P. Jansonius, B. A. W. Mowbray, Y. Cao, D. G. Wheeler, J. Chau, D. J. Dvorak, C. P. Berlinguette, ACS Energy Lett. 2020, 5, 1612.

[63]

H. Rabiee, L. Ge, X. Zhang, S. Hu, M. Li, Z. Yuan, Energy Environ. Sci. 2021, 14, 1959.

[64]

K. Yang, R. Kas, W. A. Smith, T. Burdyny, ACS Energy Lett. 2021, 6, 33.

[65]

T. Burdyny, W. A. Smith, Energy Environ. Sci. 2019, 12, 1442.

[66]

L. Gong, D. Zhang, C. Y. Lin, Y. Zhu, Y. Shen, J. Zhang, X. Han, L. Zhang, Z. Xia, Adv. Energy Mater. 2019, DOI: https://doi.org/10.1002/aenm.201902625.

[67]

N. Han, P. Ding, L. He, Y. Li, Y. Li, Adv. Energy Mater. 2020, DOI: https://doi.org/10.1002/aenm.201902338.

[68]

M. G. Kibria, J. P. Edwards, C. M. Gabardo, C. T. Dinh, A. Seifitokaldani, D. Sinton, E. H. Sargent, Adv. Mater. 2019, 31, e1807166.

[69]

M. Li, Y. Ma, J. Chen, R. Lawrence, W. Luo, M. Sacchi, W. Jiang, J. Yang, Angew. Chem. Int. Ed. 2021, 60, 11487.

[70]

W. H. Lee, Y. J. Ko, Y. Choi, S. Y. Lee, C. H. Choi, Y. J. Hwang, B. K. Min, P. Strasser, H. S. Oh, Nano Energy 2020, 76, 105030.

[71]

M. E. Leonard, L. E. Clarke, A. Forner-Cuenca, S. M. Brown, F. R. Brushett, ChemSusChem 2020, 13, 400.

[72]

F. Pan, Y. Yang, Energy Environ. Sci. 2020, 13, 2275.

[73]

D. Wakerley, S. Lamaison, J. Wicks, A. Clemens, J. Feaster, D. Corral, S. A. Jaffer, A. Sarkar, M. Fontecave, E. B. Duoss, S. Baker, E. H. Sargent, T. F. Jaramillo, C. Hahn, Nat. Energy 2022, 7, 130.

[74]

B. Pan, Y. Wang, Y. Li, Chem Catal. 2022, 2, 1267.

[75]

M. Ramdin, A. R. T. Morrison, M. De Groen, R. Van Haperen, R. De Kler, E. Irtem, A. T. Laitinen, L. J. P. Van Den Broeke, T. Breugelmans, J. P. M. Trusler, W. De Jong, T. J. H. Vlugt, Ind. Eng. Chem. Res. 2019, 58, 22718.

[76]

M. Jouny, W. Luc, F. Jiao, Ind. Eng. Chem. Res. 2018, 57, 2165.

[77]

J. B. Greenblatt, D. J. Miller, J. W. Ager, F. A. Houle, I. D. Sharp, Joule 2018, 2, 381.

[78]

M. J. Orella, S. M. Brown, M. E. Leonard, Y. Román-Leshkov, F. R. Brushett, Energ. Technol. 2020, DOI: https://doi.org/10.1002/ente.201900994.

[79]

P. Zhu, H. Wang, Nat. Catal. 2021, 4, 943.

[80]

O. S. Bushuyev, P. De Luna, C. T. Dinh, L. Tao, G. Saur, J. van de Lagemaat, S. O. Kelley, E. H. Sargent, Joule 2018, 2, 825.

[81]

M. Li, H. Wang, W. Luo, P. C. Sherrell, J. Chen, J. Yang, Adv. Mater. 2020, DOI: https://doi.org/10.1002/adma.202001848.

[82]

S. G. Han, D. D. Ma, Q. L. Zhu, Small Methods 2021, 5, e2100102.

[83]

H. Liu, Y. Zhu, J. Ma, Z. Zhang, W. Hu, Adv. Funct. Mater. 2020, 30(17), 1910534.

[84]

S. Popović, M. Smiljanić, P. Jovanovič, J. Vavra, R. Buonsanti, N. Hodnik, Angew. Chem. 2020, 132, 14844.

[85]

R. J. Lim, M. Xie, M. A. Sk, J. M. Lee, A. Fisher, X. Wang, K. H. Lim, Catal. Today 2014, 233, 169.

[86]

E. W. Lees, B. A. W. Mowbray, F. G. L. Parlane, C. P. Berlinguette, Nat. Rev. Mater. 2022, 7, 55.

[87]

M. Oßkopp, A. Löwe, C. M. S. Lobo, S. Baranyai, T. Khoza, M. Auinger, E. Klemm, J. CO2 Util. 2021, 56, 101970.

[88]

P. Ding, H. Zhao, T. Li, Y. Luo, G. Fan, G. Chen, S. Gao, X. Shi, S. Lu, X. Sun, J. Mater. Chem. A 2020, 8, 21947.

[89]

X. Lu, Y. Wu, X. Yuan, L. Huang, Z. Wu, J. Xuan, Y. Wang, H. Wang, ACS Energy Lett. 2018, 3, 2527.

[90]

H. Yang, J. J. Kaczur, S. D. Sajjad, R. I. Masel, J. CO2 Util. 2017, 20, 208.

[91]

H. Yang, J. J. Kaczur, S. D. Sajjad, R. I. Masel, J. CO2 Util. 2020, 42, 101349.

[92]

G. Díaz-Sainz, M. Alvarez-Guerra, J. Solla-Gullón, L. García-Cruz, V. Montiel, A. Irabien, Catal. Today 2020, 346, 58.

[93]

W. Lee, Y. E. Kim, M. H. Youn, S. K. Jeong, K. T. Park, Angew. Chem. Int. Ed. 2018, 57, 6883.

[94]

C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang, E. Stavitsk, H. N. Alshareef, H. Wang, Nat. Energy 2019, 4, 776.

[95]

H. Rabiee, L. Ge, J. Zhao, X. Zhang, M. Li, S. Hu, S. Smart, T. E. Rufford, Z. Zhu, H. Wang, Z. Yuan, Appl. Catal. B Environ. 2022, 310, 121362.

[96]

T. Möller, T. Ngo Thanh, X. Wang, W. Ju, Z. Jovanov, P. Strasser, Energy Environ. Sci. 2021, 14, 5995.

[97]

E. R. Cofell, U. O. Nwabara, S. S. Bhargava, D. E. Henckel, P. J. A. Kenis, ACS Appl. Mater. Interfaces 2021, 13, 15132.

[98]

L. An, R. Chen, J. Power Sources 2016, 320, 127.

[99]

A. Del Castillo, M. Alvarez-Guerra, J. Solla-Gullón, A. Sáez, V. Montiel, A. Irabien, J. CO2 Util. 2017, 18, 222.

[100]

J. Y. T. Kim, P. Zhu, F. Chen, Z. Wu, D. A. Cullen, H. Wang, Nat. Catal. 2022, 5(4), 288.

[101]

J. A. Rabinowitz, M. W. Kanan, Nat. Commun. 2020, 11, 10.

[102]

C. W. Li, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 7231.

[103]

K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, Energy Environ. Sci. 2012, 5, 7050.

[104]

E. E. Benson, C. P. Kubiak, A. J. Sathrum, J. M. Smieja, Chem. Soc. Rev. 2009, 38, 89.

[105]

F. Liang, K. Zhang, L. Zhang, Y. Zhang, Y. Lei, X. Sun, Small 2021, DOI: https://doi.org/10.1002/smll.202100323.

[106]

Y. Xue, Y. Guo, H. Cui, Z. Zhou, Small Methods 2021, DOI: https://doi.org/10.1002/smtd.202100736.

[107]

B. Zhang, Y. Jiang, M. Gao, T. Ma, W. Sun, H. Pan, Nano Energy 2021, 80, 105504.

[108]

D. Gao, R. M. Arán-Ais, H. S. Jeon, B. Roldan Cuenya, Nat. Catal. 2019, 2, 198.

[109]

J. Yu, J. Wang, Y. Ma, J. Zhou, Y. Wang, P. Lu, J. Yin, R. Ye, Z. Zhu, Z. Fan, Adv. Funct. Mater. 2021, DOI: https://doi.org/10.1002/adfm.202102151.

[110]

H. Rabiee, L. Ge, X. Zhang, S. Hu, M. Li, S. Smart, Z. Zhu, Z. Yuan, Appl. Catal. B Environ. 2021, 286, 119945.

[111]

H. Rabiee, X. Zhang, L. Ge, S. Hu, M. Li, S. Smart, Z. Zhu, Z. Yuan, ACS Appl. Mater. Interfaces 2020, 12, 21670.

[112]

D. Higgins, C. Hahn, C. Xiang, T. F. Jaramillo, A. Z. Weber, ACS Energy Lett. 2019, 4, 317.

[113]

M. P. L. Kang, M. J. Kolb, F. Calle-Vallejo, B. S. Yeo, Adv. Funct. Mater. 2022, DOI: https://doi.org/10.1002/adfm.202111597.

[114]

P. Lamagni, M. Miola, J. Catalano, M. S. Hvid, M. A. H. Mamakhel, M. Christensen, M. R. Madsen, H. S. Jeppesen, X. M. Hu, K. Daasbjerg, T. Skrydstrup, N. Lock, Adv. Funct. Mater. 2020, DOI: https://doi.org/10.1002/adfm.201910408.

[115]

G. Wen, D. U. Lee, B. Ren, F. M. Hassan, G. Jiang, Z. P. Cano, J. Gostick, E. Croiset, Z. Bai, L. Yang, Z. Chen, Adv. Energy Mater. 2018, DOI: https://doi.org/10.1002/aenm.201802427.

[116]

Z. Wu, H. Wu, W. Cai, Z. Wen, B. Jia, L. Wang, W. Jin, T. Ma, Angew. Chem. Int. Ed. 2021, 60, 12554.

[117]

L. Peng, Y. Wang, Y. Wang, N. Xu, W. Lou, P. Liu, D. Cai, H. Huang, J. Qiao, Appl. Catal. B Environ. 2021, 288, 120003.

[118]

J. T. Feaster, C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Nørskov, T. F. Jaramillo, ACS Catal. 2017, 7, 4822.

[119]

T. Zhang, Y. Qiu, P. Yao, X. Li, H. Zhang, A. C. S. Sustain, Chem. Eng. 2019, 7, 15190.

[120]

Z. Zhang, G. Wen, D. Luo, B. Ren, Y. Zhu, R. Gao, H. Dou, G. Sun, M. Feng, Z. Bai, A. Yu, Z. Chen, J. Am. Chem. Soc. 2021, 143, 6855.

[121]

Z. Zhang, Y. P. Deng, Z. Xing, D. Luo, S. Sy, Z. P. Cano, G. Liu, Y. Jiang, Z. Chen, ACS Nano 2019, 13, 7062.

[122]

Z. Ma, S. Li, L. Wu, L. Song, G. Jiang, Z. Liang, D. Su, Y. Zhu, R. R. Adzic, J. X. Wang, Z. Chen, Nano Energy 2020, 69, 104455.

[123]

F. Bienen, D. Kopljar, A. Löwe, S. Geiger, N. Wagner, E. Klemm, K. A. Friedrich, A. C. S. Sustain, Chem. Eng. 2020, 8, 13759.

[124]

D. Gao, H. Zhou, F. Cai, J. Wang, G. Wang, X. Bao, ACS Catal. 2018, 8, 1510.

[125]

I. Merino-Garcia, L. Tinat, J. Albo, M. Alvarez-Guerra, A. Irabien, O. Durupthy, V. Vivier, C. M. Sánchez-Sánchez, Appl. Catal. B Environ. 2021, 297, 120447.

[126]

T. Liu, K. Ohashi, K. Nagita, T. Harada, S. Nakanishi, K. Kamiya, Small 2022, 18, 2205323.

[127]

L. Lin, X. He, X. Zhang, W. Ma, B. Zhang, D. Wei, S. Xie, Q. Zhang, X. Yi, Y. Wang, Angew. Chem. 2023, 135(3), 1.

[128]

H. Rabiee, L. Ge, S. Hu, H. Wang, Z. Yuan, Chem. Eng. J. 2022, 450, 138476.

[129]

C. Zhu, G. Shen, W. Chen, X. Dong, G. Li, Y. Song, W. Wei, Y. Sun, J. Power Sources 2021, 495, 2.

[130]

R. Kas, K. K. Hummadi, R. Kortlever, P. De Wit, A. Milbrat, M. W. J. Luiten-Olieman, N. E. Benes, M. T. M. Koper, G. Mul, Nat. Commun. 2016, 7(1), 10748.

[131]

H. Xie, T. Wang, J. Liang, Q. Li, S. Sun, Nano Today 2018, 21, 41.

[132]

A. R. Woldu, Z. Huang, P. Zhao, L. Hu, D. Astruc, Coord. Chem. Rev. 2022, 454, 214340.

[133]

J. Zhang, Z. Li, R. Cai, T. Zhang, S. Yang, L. Ma, Y. Wang, Y. Wu, J. Wu, Energy Environ. Mater. 2021, DOI: https://doi.org/10.1002/eem2.12307.

[134]

H. Rabiee, L. Ge, X. Zhang, S. Hu, M. Li, S. Smart, Z. Zhu, H. Wang, Z. Yuan, Appl. Catal. B Environ. 2021, 298, 120538.

[135]

B. Endrödi, E. Kecsenovity, A. Samu, F. Darvas, R. V. Jones, V. Török, A. Danyi, C. Janáky, ACS Energy Lett. 2019, 4, 1770.

[136]

S. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu, H. R. M. Jhong, A. A. Gewirth, T. Fujigaya, N. Nakashima, P. J. A. Kenis, ACS Energy Lett. 2018, 3, 193.

[137]

C. Chen, Y. Li, P. Yang, Joule 2021, 5, 737.

[138]

L. Xiao, X. Liu, R. Zhou, T. Zhang, R. Zhou, B. Ouyang, E. Kan, P. J. Cullen, K. (Ken) Ostrikov, X. Tu, Energy Convers. Manag. 2021, 231, 113847.

[139]

Q. Wan, Q. He, Y. Zhang, L. Zhang, J. Li, J. Hou, X. Zhuang, C. Ke, J. Zhang, Electrochim. Acta 2021, 392, 139023.

[140]

Z. Wang, Y. Zhou, D. Liu, R. Qi, C. Xia, M. Li, B. You, B. Y. Xia, Angew. Chem. Int. Ed. 2022, 61, 202200552.

[141]

C. Kim, F. Dionigi, V. Beermann, X. Wang, T. Möller, P. Strasser, Adv. Mater. 2019, DOI: https://doi.org/10.1002/adma.201805617.

[142]

Z. Z. Niu, L. P. Chi, R. Liu, Z. Chen, M. R. Gao, Energy Environ. Sci. 2021, 14, 4169.

[143]

L. Ge, H. Rabiee, M. Li, S. Subramanian, Y. Zheng, J. H. Lee, T. Burdyny, H. Wang, Chem 2022, 8(3), 663.

[144]

L. M. J. Sprakel, B. Schuur, Sep. Purif. Technol. 2019, 211, 935.

Energy & Environmental Materials
Cite this article:
Kuang Y, Rabiee H, Ge L, et al. High-Concentration Electrosynthesis of Formic Acid/Formate from CO2: Reactor and Electrode Design Strategies. Energy & Environmental Materials, 2023, 6(6). https://doi.org/10.1002/eem2.12596
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return