PDF (2.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Magnetic Field Controllable Photocurrent Properties in BiFe0.9Ni0.1O3/La0.7Sr0.3MnO3 Laminate Thin Film

Guanzhong Huo1,2Ke Wang1,2Qingying Ye1()Shuiyuan Chen1,2 ()Chao Su1,2Yuxiang Zhang1,2Guilin Chen2Zhigao Huang2
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou 350117, China
Show Author Information

Abstract

This paper reports a multifunctional magnetic-photoelectric laminate device based on the integration of spintronic material (La0.7Sr0.3MnO3) and multiferroic (Ni-doped BiFeO3), in which the repeatable modulation effect on the photoelectric properties were achieved by applying external magnetic fields. More obviously, photocurrent density (J) of the laminate was largely enhanced, the change rate of J up to 287.6% is obtained. This sensing function effect should be attributed to the low-field magnetoresistance effect in perovskite manganite and the scattering of spin photoelectron in multiferroic material. The laminate perfectly combines the functions of sensor and controller, which can not only reflect the intensity of environmental magnetic field, but also modulate the photoelectric conversion performance. This work provides an alternative and facile way to realize multi-degree-of-freedom control for photoelectric conversion performances and lastly miniaturize multifunction device.

Electronic Supplementary Material

Download File(s)
eem-7-2-e12601_ESM.doc (257.5 KB)

References

[1]

W. Yang, D. Peng, H. Kimura, X. Zhang, X. Sun, R. A. Pashameah, E. Alzahrani, B. Wang, Z. Guo, W. Du, C. Hou, Adv. Compos. Hybrid Mater. 2022, 5, 3146.

[2]

Q. Zhu, Y. Zhao, B. Miao, H. M. Abo-Dief, M. Qu, R. A. Pashameah, B. B. Xu, M. Huang, H. Algadi, X. Liu, Z. Guo, Prog. Org. Coat. 2022, 172, 107153.

[3]

J. Cai, V. Murugadoss, J. Jiang, X. Gao, Z. Lin, M. Huang, J. Guo, S. A. Alsareii, H. Algadi, M. Kathiresan, Adv. Compos. Hybrid Mater. 2022, 5, 641.

[4]

A. Arun, P. Malrautu, A. Laha, S. Ramakrishna, Eng. Sci. 2021, 16, 71.

[5]

J. Xu, P. Zhu, I. H. E. Azab, B. B. Xu, Z. Guo, A. Y. Elnaggar, G. A. M. Mersal, X. Liu, Y. Zhi, Z. Lin, H. Algadi, S. Shan, Chin. J. Chem. Eng. 2022, 49, 187.

[6]

J. Nan, S. Guo, D. Alhashmialameer, Q. He, Y. Meng, R. Ge, S. M. El-Bahy, N. Naik, V. Murugadoss, M. Huang, B. B. Xu, Q. Shao, Z. Guo, ACS Appl. Nano Mater. 2022, 5, 8755.

[7]

Y. Si, J. Li, B. Cui, D. Tang, L. Yang, V. Murugadoss, S. Maganti, M. Huang, Z. Guo, Adv. Compos. Hybrid Mater. 2022, 5, 1180.

[8]

Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Angew. Chem. Int. Ed. 2022, 61, e202200705.

[9]

F. Yao, W. Xie, C. Ma, D. Wang, Z. M. El-Bahy, M. H. Helal, H. Liu, A. Du, Z. Guo, H. Gu, Compos. B 2022, 245, 110236.

[10]

R. Guo, L. You, W. Lin, A. Abdelsamie, X. Shu, G. Zhou, S. Chen, L. Liu, X. Yan, J. Wang, J. Chen, Nat. Commun. 2020, 11, 2571.

[11]

D. Pan, G. Yang, H. M. Abo-Dief, J. Dong, F. Su, C. Liu, Y. Li, B. B. Xu, V. Murugadoss, N. Naik, S. M. El-Bahy, Z. M. El-Bahy, M. Huang, Z. Guo, Nano-Micro Lett. 2022, 14, 118.

[12]

K. Ogata, Y. Nakayama, G. Xiao, H. Kaiju, Sci. Rep. 2021, 11, 13807.

[13]

C. Wang, K. Jin, Z. Xu, L. Wang, C. Ge, H. Lu, H. Guo, M. He, G. Yang, Appl. Phys. Lett. 2011, 98, 192901.

[14]

Y.-L. Huang, D. Nikonov, C. Addiego, R. V. Chopdekar, B. Prasad, L. Zhang, J. Chatterjee, H.-J. Liu, A. Farhan, Y.-H. Chu, M. Yang, M. Ramesh, Z. Q. Qiu, B. D. Huey, C. C.-C. Lin, T. Gosavi, J. Íñiguez, J. Bokor, X. Pan, I. Young, L. W. Martin, R. Ramesh, Nat. Commun. 2020, 11, 2836.

[15]

C. Dang, Q. Mu, X. Xie, X. Sun, X. Yang, Y. Zhang, S. Maganti, M. Huang, Q. Jiang, I. Seok, W. Du, C. Hou, Adv. Compos. Hybrid Mater. 2022, 5, 606.

[16]

Y. Ma, X. Xie, W. Yang, Z. Yu, X. Sun, Y. Zhang, X. Yang, H. Kimura, C. Hou, Z. Guo, W. Du, Adv. Compos. Hybrid Mater. 2022, 4, 906.

[17]

C. Hou, B. Wang, V. Murugadoss, S. Vupputuri, Y. Chao, Z. Guo, C. Wang, W. Du, Eng. Sci. 2020, 11, 19.

[18]

H. Yan, X. Dai, K. Ruan, S. Zhang, X. Shi, Y. Guo, H. Cai, J. Gu, Adv. Compos. Hybrid Mater. 2021, 4, 36.

[19]

S. Mishra, P. Chaudhary, B. C. Yadav, A. Umar, P. Lohia, D. K. Dwivedi, Eng. Sci. 2021, 15, 138.

[20]

K. Ruan, J. Gu, Macromolecules 2022, 55, 4134.

[21]

A. Chen, C. Wang, O. A. A. Ali, S. F. Mahmoud, Y. Shi, Y. Ji, H. Algadi, S. M. El-Bahy, M. Huang, Z. Guo, D. Cui, H. Wei, Compos. A 2022, 163, 107174.

[22]

S. Gao, X. Zhao, Q. Fu, T. Zhang, J. Zhu, F. Hou, J. Ni, C. Zhu, T. Li, Y. Wang, V. Murugadoss, G. A. M. Mersal, M. M. Ibrahime, Z. M. El-Bahy, M. Huang, Z. Guo, J. Mater. Sci. Technol. 2022, 126, 152.

[23]

B. Yuan, Y. Wang, A. Y. Elnaggar, I. H. E. Azab, M. Huang, M. H. H. Mahmoud, S. M. El-Bahy, M. Guo, Adv. Compos. Hybrid Mater. 2022, 5, 813.

[24]

H. Zhu, Y. Wang, M. Qu, Y. Pan, G. Zheng, K. Dai, M. Huang, A. Alhadhrami, M. M. Ibrahim, Z. M. El-Bahy, C. Liu, C. Shen, X. Liu, Adv. Compos. Hybrid Mater. 2022, 5, 1966.

[25]

Y. Wang, D. Yang, M. M. Hessien, D. Kang, M. M. Ibrahim, S. Yao, G. A. M. Mersal, R. Ma, S. M. El-Bahy, M. Huang, Q. Yuan, B. Cui, H. Dengwei, Adv. Compos. Hybrid Mater. 2022, 5, 2106.

[26]

R. Guo, L. Tao, M. Li, Z. Liu, W. Lin, G. Zhou, X. Chen, L. Liu, X. Yan, H. Tian, E. Y. Tsymba, J. Chen, Sci. Adv. 2021, 7, eabf1033.

[27]

D. Yi, P. Yu, Y.-C. Chen, H.-H. Lee, Q. He, Y.-H. Chu, R. Ramesh, Adv. Mater. 2019, 31, 1806335.

[28]

M. J. Calderon, S. Liang, R. Yu, J. Salafranca, S. Dong, S. Yunoki, L. Brey, A. Moreo, Phys. Rev. B 2011, 84, 024422.

[29]

E.-J. Guo, J. R. Petrie, M. A. Roldan, Q. Li, R. D. Desautels, T. Charlton, A. Herklotz, J. Nichols, J. V. Lierop, J. W. Freeland, S. V. Kalinin, H. N. Lee, M. R. Fitzsimmons, Adv. Mater. 2017, 29, 1700790.

[30]

Y. Liu, Y. Qi, P. Zhou, C. Guan, H. Chen, J. Wang, Z. Ma, T. Zhang, Y. Liu, J. Phys. D. Appl. Phys. 2018, 51, 025303.

[31]

L. You, C. Lu, P. Yang, G. Han, T. Wu, U. Luders, W. Prellier, K. Yao, L. Chen, J. Wang, Adv. Mater. 2010, 22, 4964.

[32]

C. Jin, L. Kou, J. Phys. D. Appl. Phys. 2021, 54, 413001.

[33]

K. Takiguchi, L. D. Anh, T. Chiba, T. Koyama, D. Chiba, M. Tanaka, Nat. Phys. 2019, 15, 1134.

[34]

F. Y. Bruno, M. N. Grisolia, C. Visani, S. Valencia, M. Varela, R. Abrudan, J. Tornos, A. Rivera-Calzada, A. A. Ünal, S. J. Pennycook, Z. Sefrioui, C. Leon, J. E. Villegas, J. Santamaria, A. Barthélémy, M. Bibes, Nat. Commun. 2015, 6, 6306.

[35]

A. Chen, M. Weigand, Z. Bi, W. Zhang, X. Lü, P. Dowden, J. L. MacManus-Driscoll, H. Wang, Q. Jia, Sci. Rep. 2014, 4, 5426.

[36]

A. Agbelele, D. Sando, C. Toulouse, C. Paillard, R. D. Johnson, R. Rüffer, A. F. Popkov, C. Carrétéro, P. Rovillain, J.-M. Le Breton, B. Dkhil, M. Cazayous, Y. Gallais, M.-A. Méasson, A. Sacuto, P. Manuel, A. K. Zvezdin, A. Barthélémy, J. Juraszek, M. Bibes, Adv. Mater. 2017, 29, 1602327.

[37]

J. Beltran-Huarac, D. Diaz-Diestra, M. Bsatee, J. Wang, W. M. Jadwisienczak, B. R. Weiner, G. Morell, Nanotechnology 2016, 27, 085703.

[38]

B. Ding, W. Kuang, Y. Pan, I. V. Grigorieva, A. K. Geim, B. Liu, H.-M. Cheng, Nat. Commun. 2020, 11, 3725.

[39]

H. Tsai, T. Higo, K. Kondou, T. Nomoto, A. Sakai, A. Kobayashi, T. Nakano, K. Yakushiji, R. Arita, S. Miwa, Y. Otani, S. Nakatsuji, Nature 2020, 580, 30.

[40]

Y.-D. Liou, Y.-Y. Chiu, R. T. Hart, C.-Y. Kuo, Y.-L. Huang, Y.-C. Wu, R. V. Chopdekar, H.-J. Liu, A. Tanaka, C.-T. Chen, C.-F. Chang, L. H. Tjeng, Y. Cao, V. Nagarajan, Y.-H. Chu, Y.-C. Chen, J.-C. Yang, Nat. Mater. 2019, 18, 580.

[41]

Z. Huang, P. Li, Z. Fan, H. Fan, Q. Luo, C. Chen, D. Chen, M. Zeng, M. Qin, Z. Zhang, X. Lu, X. Gao, J.-M. Liu, Phys. Status Solidi RRL 2018, 12, 1700301.

[42]

H. Matsuo, Y. Noguchi, M. Miyayama, Nat. Commun. 2017, 8, 207.

[43]

M.-M. Yang, M. Alexe, Adv. Mater. 2018, 30, 1704908.

[44]

A. Molinari, H. Hahn, R. Kruk, Adv. Mater. 2019, 31, 1806662.

[45]

L. You, F. Zheng, L. Fang, Y. Zhou, L. Z. Tan, Z. Zhang, G. Ma, D. Schmidt, A. Rusydi, L. Wang, L. Chang, A. M. Rappe, J. Wang, Sci. Adv. 2018, 4, eaat3438.

[46]

D. Li, D. Zheng, C. Jin, W. Zheng, H. Bai, ACS Appl. Mater. Interfaces 2018, 10, 19836.

[47]

W. Huang, J. Chakrabartty, C. Harnagea, D. Gedamu, I. Ka, M. Chaker, F. Rosei, R. Nechache, ACS Appl. Mater. Interfaces 2018, 10, 12790.

[48]

Y.-H. Hsieh, F. Xue, T. Yang, H.-J. Liu, Y. Zhu, Y.-C. Chen, Q. Zhan, C.-G. Duan, L.-Q. Chen, Q. He, Y.-H. Chu, Nat. Commun. 2016, 7, 13199.

[49]

Y. Yu, X. Wang, Adv. Mater. 2018, 30, 1800154.

[50]

Y. Heo, B.-K. Jang, S. J. Kim, C.-H. Yang, J. Seidel, Adv. Mater. 2014, 26, 7568.

[51]

L. Wu, A. R. Akbashev, A. A. Podpirka, J. E. Spanier, P. K. Davies, J. Am. Ceram. Soc. 2019, 102, 4188.

[52]

X. Han, Y. Ji, Y. Yang, Adv. Funct. Mater. 2022, 32, 2109625.

[53]

S. Körbel, S. Sanvito, Phys. Rev. B 2020, 102, 081304.

[54]

C. Ponraj, G. Vinitha, J. Daniel, Mater. Res. Express 2019, 6, 084006.

[55]

Y. Yun, L. Mühlenbein, D. S. Knoche, A. Lotnyk, A. Bhatnagar, Sci. Adv. 2021, 7, eabe4206.

[56]

H. Xu, H. Zhang, Y. Ma, M. Jiang, Y. Zhang, Y. Wu, H. Zhang, R. Xia, Q. Niu, X. Li, W. Huang, Sci. Rep. 2019, 9, 15441.

[57]

Y. Ren, F. Nan, L. You, Y. Zhou, Y. Wang, J. Wang, X. Su, M. Shen, L. Fang, Adv. Sci. small 2017, 13, 1603457.

[58]

M. Huijben, P. Yu, L. W. Martin, H. J. A. Molegraaf, Y.-H. Chu, M. B. Holcomb, N. Balke, G. Rijnders, R. Ramesh, Adv. Mater. 2013, 25, 4739.

[59]

S. Majumdar, S. van Dijken, J. Phys. D. Appl. Phys. 2014, 47, 034010.

[60]

A. Chen, Z. Bi, C.-F. Tsai, L. Chen, Q. Su, X. Zhang, H. Wang, Cryst. Growth Des. 2011, 11, 5405.

[61]

C. Reitz, D. Wang, D. Stoeckel, A. Beck, T. Leichtweiss, H. Hahn, T. Brezesinski, ACS Appl. Mater. Interfaces 2017, 9, 22799.

[62]

A. Boileau, M. Dallocchio, F. Baudouin, A. David, U. Lüders, B. Mercey, A. Pautrat, V. Demange, M. Guilloux-Viry, W. Prellier, A. Fouchet, ACS Appl. Mater. Interfaces 2019, 11, 37302.

[63]

Y. Ogimoto, M. Izumi, A. Sawa, T. Manako, H. Sato, H. Akoh, M. Kawasaki, Y. Tokura, Jpn. J. Appl. Phys. 2003, 42, L369.

[64]

K. Tanaka, S. Okamura, T. Shiosaki, Jpn. J. Appl. Phys. 2001, 40, 6821.

[65]

Y. M. Liang, X. K. Ning, Z. J. Wang, B. He, Y. Bai, X. G. Zhao, W. Liu, Z. D. Zhang, J. Phys. Chem. C 2017, 121, 16810.

[66]

W. Sun, W. Wang, D. Chen, Z. Cheng, T. Jia, Y. Wang, J. Phys. Chem. C 2019, 123, 16393.

[67]

K. H. Tan, Y.-W. Chen, C. N. Van, H. Wang, J.-W. Chen, F. S. Lim, K.-H. Chew, Q. Zhan, C.-L. Wu, S.-P. Chai, Y.-H. Chu, W. S. Chang, ACS Appl. Mater. Interfaces 2019, 11, 1655.

[68]

A. Chen, Z. Bi, C.-F. Tsai, J. Lee, Q. Su, X. Zhang, Q. Jia, J. L. MacManus-Driscoll, H. Wang, Adv. Funct. Mater. 2011, 21, 2423.

Energy & Environmental Materials
Article number: e12601
Cite this article:
Huo G, Wang K, Ye Q, et al. Magnetic Field Controllable Photocurrent Properties in BiFe0.9Ni0.1O3/La0.7Sr0.3MnO3 Laminate Thin Film. Energy & Environmental Materials, 2024, 7(2): e12601. https://doi.org/10.1002/eem2.12601
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return