PDF (1.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Co-Harvest Phase-Change Enthalpy and Isomerization Energy for High-Energy Heat Output by Controlling Crystallization of Alkyl-Grafted Azobenzene Molecules

Jian Gao1Yiyu Feng1,2 ()Wenyu Fang1Hui Wang1Jing Ge1Xiaoyu Yang1Huitao Yu1Mengmeng Qin1Wei Feng1 ()
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
Show Author Information

Abstract

Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules. Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization. This article reports two series of asymmetrically alkyl-grafted azobenzene (Azo-g), with and without a methyl group, that have an optically triggered phase change. Three exothermic modes were designed to utilize crystallization enthalpy (∆Hc) and photothermal (isomerization) energy (∆Hp) at different temperatures determined by the crystallization. Azo-g has high heat output (275–303 J g−1) by synchronously releasing ∆Hc and ∆Hp over a wide temperature range (−79 °C to 25 °C). We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6 °C at a temperature of −8 °C. The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes.

Electronic Supplementary Material

Video
eem-7-3-e12607_ESM2.mov
eem-7-3-e12607_ESM3.mov
eem-7-3-e12607_ESM4.mov
Download File(s)
eem-7-3-e12607_ESM1.docx (3.4 MB)

References

[1]

L. Wang, Q. Li, Chem. Soc. Rev. 2018, 47, 1044.

[2]

A. K. Saydjari, P. Weis, S. Wu, Adv. Energy Mater. 2017, 7, 1601622.

[3]

Q. Yan, Y. Zhang, Y. Dang, Y. Feng, W. Feng, Energy Stor. Mater. 2020, 24, 662.

[4]

E. N. Cho, D. Zhitomirsky, G. G. Han, Y. Liu, J. C. Grossman, ACS Appl. Mater. Interfaces 2017, 9, 8679.

[5]

M. Yamauchi, K. Yokoyama, N. Aratani, H. Yamada, S. Masuo, Angew. Chem. Int. Ed. Engl. 2019, 58, 14173.

[6]

H. Akiyama, S. Kanazawa, Y. Okuyama, M. Yoshida, H. Kihara, H. Nagai, Y. Norikane, R. Azumi, ACS Appl. Mater. Interfaces 2014, 6, 7933.

[7]

H. M. Bandara, S. C. Burdette, Chem. Soc. Rev. 2012, 41, 1809.

[8]

S. Wu, T. Li, Z.-Y. Zhang, T. Li, R. Wang, Matter 2021, 4, 3385.

[9]

Z. Y. Zhang, Y. He, Z. Wang, J. Xu, M. Xie, P. Tao, D. Ji, K. Moth-Poulsen, T. Li, J. Am. Chem. Soc. 2020, 142, 12256.

[10]

Y. Shi, M. A. Gerkman, Q. Qiu, S. Zhang, G. G. D. Han, J. Mater. Chem. A 2021, 9, 9798.

[11]

J. Tang, Y. Feng, W. Feng, Compos. Commun. 2021, 23, 100575.

[12]

G. G. D. Han, J. H. Deru, E. N. Cho, J. C. Grossman, Chem. Commun. 2018, 54, 10722.

[13]

H. Liu, J. Tang, L. Dong, H. Wang, T. Xu, W. Gao, F. Zhai, Y. Feng, W. Feng, Adv. Funct. Mater. 2020, 31, 2008496.

[14]

W. C. Xu, S. Sun, S. Wu, Angew. Chem. Int. Ed. Engl. 2019, 58, 9712.

[15]

X. Xu, G. Wang, Small 2022, 18, 2107473.

[16]

Q. Qiu, M. A. Gerkman, Y. Shi, G. G. D. Han, Chem. Commun. 2021, 57, 9458.

[17]

R. J. W. Le Févre, J. Northcott, J. Chem. Soc. 1953, 867.

[18]

A. H. Cook, J. Chem. Soc. 1938, 876.

[19]

S. Nakatsuji, M. Fujino, S. Hasegawa, H. Akutsu, J. Yamada, V. S. Gurman, A. K. Vorobiev, J. Org. Chem. 2007, 72, 2021.

[20]

Y. Okui, M. Han, Chem. Commun. 2012, 48, 11763.

[21]

Y. Norikane, E. Uchida, S. Tanaka, K. Fujiwara, E. Koyama, R. Azumi, H. Akiyama, H. Kihara, M. Yoshida, Org. Lett. 2014, 16, 5012.

[22]

Y. Norikane, E. Uchida, S. Tanaka, K. Fujiwara, H. Nagai, H. Akiyama, J. Photopolym. Sci. Technol. 2016, 29, 149.

[23]

J. Hu, X. Li, Y. Ni, S. Ma, H. Yu, J. Mater. Chem. C 2018, 6, 10815.

[24]

D.-Y. Kim, S.-A. Lee, H. Kim, S. M. Kim, N. Kim, K.-U. Jeong, Chem. Commun. 2015, 51, 11080.

[25]

G. G. D. Han, H. Li, J. C. Grossman, Nat. Commun. 2017, 8, 1446.

[26]

K. Ishiba, M. A. Morikawa, C. Chikara, T. Yamada, K. Iwase, M. Kawakita, N. Kimizuka, Angew. Chem. Int. Ed. Engl. 2015, 54, 1532.

[27]

H. Zhou, C. Xue, P. Weis, Y. Suzuki, S. Huang, K. Koynov, G. K. Auernhammer, R. Berger, H.-J. Butt, S. Wu, Nat. Chem. 2017, 9, 145.

[28]

Y. Hao, S. Huang, Y. Guo, L. Zhou, H. Hao, C. J. Barrett, H. Yu, J. Mater. Chem. C 2019, 7, 503.

[29]

H. Akiyama, T. Fukata, A. Yamashita, M. Yoshida, H. Kihara, J. Adhes. 2017, 93, 823.

[30]

G. Alva, L. Liu, X. Huang, G. Fang, Renew. Sust. Energ. Rev. 2017, 68, 693.

[31]

A. Sharma, V. V. Tyagi, C. R. Chen, D. Buddhi, Renew. Sust. Energ. Rev. 2009, 13, 318.

[32]

H. Wang, Y. Feng, H. Yu, L. Dong, F. Zhai, J. Tang, J. Ge, W. Feng, Nano Energy 2021, 89, 106401.

[33]

L. Dong, Y. Feng, L. Wang, W. Feng, Chem. Soc. Rev. 2018, 47, 7339.

[34]

G. Jones, S. H. Chiang, P. T. Xuan, J. Photochem. 1979, DOI: 10.1016/0047-2670(79)80034-9.

[35]

Z. Yoshida, J. Photochem. 1985, 29, 27.

[36]

J. Hu, S. Huang, M. Yu, H. Yu, Adv. Energy Mater. 2019, 9, 1901363.

[37]

N. Kimizuka, N. Yanai, M. Morikawa, Langmuir 2016, 32, 12304.

[38]

M. A. Gerkman, R. S. L. Gibson, J. Calbo, Y. Shi, M. J. Fuchter, G. G. D. Han, J. Am. Chem. Soc. 2020, 142, 8688.

[39]

K. Masutani, M. A. Morikawa, N. Kimizuka, Chem. Commun. 2014, 50, 15803.

[40]

X. Xu, P. Zhang, B. Wu, Y. Xing, K. Shi, W. Fang, H. Yu, G. Wang, ACS Appl. Mater. Interfaces 2020, 12, 50135.

[41]

G. D. Han, S. S. Park, Y. Liu, D. Zhitomirsky, E. Cho, M. Dincã, J. C. Grossman, J. Mater. Chem. A 2016, 4, 16157.

[42]

C. Cabanetos, A. El Labban, J. A. Bartelt, J. D. Douglas, W. R. Mateker, J. M. Frechet, M. D. McGehee, P. M. Beaujuge, J. Am. Chem. Soc. 2013, 135, 4656.

[43]

E. Uchida, R. Azumi, Y. Norikane, Nat. Commun. 2015, 6, 7310.

[44]

T. Itahara, Liq. Cryst. 2010, 37, 1157.

[45]

P. A. Henderson, O. Niemeyer, C. T. Imrie, Liq. Cryst. 2010, 28, 463.

[46]

N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, M. Koch, Opt. Express 2010, 18, 6097.

[47]

H. Wang, Y. Feng, J. Gao, W. Fang, J. Ge, X. Yang, F. Zhai, Y. Yu, W. Feng, Adv. Sci. 2022, 9, 2201657.

Energy & Environmental Materials
Article number: e12607
Cite this article:
Gao J, Feng Y, Fang W, et al. Co-Harvest Phase-Change Enthalpy and Isomerization Energy for High-Energy Heat Output by Controlling Crystallization of Alkyl-Grafted Azobenzene Molecules. Energy & Environmental Materials, 2024, 7(3): e12607. https://doi.org/10.1002/eem2.12607
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return