PDF (5.1 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

A Facile Li2TiO3 Surface Modification to Improve the Structure Stability and Electrochemical Performance of Full Concentration Gradient Li-Rich Oxides

Naifang Hu1Yuan Yang1,2Lin Li1Yuhan Zhang1,3Zhiwei Hu4Lan Zhang5 ()Jun Ma1,6()Guanglei Cui1,3,6 ()
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden D-01187, Germany
CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Shandong Energy Institute, Qingdao 266101, China
Show Author Information

Abstract

Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage, reduced voltage decay and enhanced rate performance, whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance. Herein, a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process. It realizes not only a stable Li2TiO3 coating layer with 3D diffusion channels for fast Li+ ions transfer, but also dopes partial Ti4+ ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure. Consequently, the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability, elevated thermal stability with decomposition temperature from 289.57 ℃ to 321.72 ℃, and enhanced cycle performance (205.1 mAh g−1 after 150 cycles) with slowed voltage drop (1.67 mV per cycle). This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides, which can facilitate its practical application for developing higher energy density lithium-ion batteries.

Electronic Supplementary Material

Download File(s)
eem-7-3-e12610_ESM.docx (4.8 MB)

References

[1]

J. M. Zheng, S. J. Myeong, W. R. Cho, P. F. Yan, J. Xiao, C. M. Wang, J. Cho, J. G. Zhang, Adv. Energy Mater. 2017, 7, 1691284.

[2]

S. J. Hu, A. S. Pillai, G. M. Liang, W. K. Pang, H. Q. Wang, Q. Y. Li, Z. P. Guo, Electrochem. Energy Rev. 2019, 2, 277.

[3]

L. de Biasi, B. Schwarz, T. Brezesinski, P. Hartmann, J. Janek, H. Ehrenberg, Adv. Mater. 2019, 31, 1900985.

[4]

P. K. Nayak, E. M. Erickson, F. Schipper, T. R. Penki, N. Munichandraiah, P. Adelhelm, H. Sclar, F. Amalraj, B. Markovsky, D. Aurbach, Adv. Energy Mater. 2018, 8, 17023397.

[5]

Y. W. Zhai, J. C. Zhang, H. Zhang, X. Z. Liu, C. W. Wang, L. M. Sun, X. F. Liu, J. Electrochem. Soc. 2019, 166, A1323.

[6]

B. H. Song, W. D. Li, S. M. Oh, A. Manthiram, ACS Appl. Mater. Interfaces 2017, 9, 9718.

[7]

M. Zubair, G. Y. Li, B. Y. Wang, L. Wang, H. J. Yu, ACS Appl. Energy Mater. 2019, 2, 503.

[8]

W. Liu, P. Oh, X. Liu, S. Myeong, W. Cho, J. Cho, Adv. Energy Mater. 2015, 5, 1500274.

[9]

Z. H. Sun, L. Q. Xu, C. Q. Dong, H. T. Zhang, M. T. Zhang, Y. Y. Liu, Y. Zhou, Y. Han, Y. S. Chen, J. Mater. Chem. A 2019, 7, 3375.

[10]

B. A. Li, H. J. Yan, J. Ma, P. R. Yu, D. G. Xia, W. F. Huang, W. S. Chu, Z. Y. Wu, Adv. Funct. Mater. 2014, 24, 5112.

[11]

W. He, P. Liu, B. Qu, Z. Zheng, H. Zheng, P. Deng, P. Li, S. Li, H. Huang, L. Wang, Q. Xie, D.-L. Peng, Adv. Sci. 2019, 6, 1802114.

[12]

S. Hu, Y. Li, Y. Chen, J. Peng, T. Zhou, W. K. Pang, C. Didier, V. K. Peterson, H. Wang, Q. Li, Z. Guo, Adv. Energy Mater. 2019, 9, 1901795.

[13]

F. Wu, X. Zhang, T. Zhao, L. Li, M. Xie, R. Chen, ACS Appl. Mater. Interfaces 2015, 7, 3773.

[14]

X. Zhang, X. Xie, R. Yu, J. Zhou, Y. Huang, S. Cao, Y. Wang, K. Tang, C. Wu, X. Wang, ACS Appl. Energy Mater. 2019, 2, 3532.

[15]

D. Wang, X. Zhang, R. Xiao, X. Lu, Y. Li, T. Xu, D. Pan, Y.-S. Hu, Y. Bai, Electrochim. Acta 2018, 265, 244.

[16]

X.-D. Zhang, J.-L. Shi, J.-Y. Liang, Y.-X. Yin, J.-N. Zhang, X.-Q. Yu, Y.-G. Guo, Adv. Mater. 2018, 30, 1801751.

[17]

Y. Su, F. Yuan, L. Chen, Y. Lu, J. Dong, Y. Fang, S. Chen, F. Wu, J. Energy Chem. 2020, 51, 39.

[18]

X. Ju, X. Hou, T. Beuse, Z. Liu, L. Du, J.-P. Brinkmann, E. Paillard, T. Wang, M. Winter, J. Li, ACS Appl. Mater. Interfaces 2020, 12, 43596.

[19]

T. Wu, X. Liu, X. Zhang, Y. Lu, B. Wang, Q. Deng, Y. Yang, E. Wang, Z. Lyu, Y. Li, Y. Wang, Y. Lyu, C. He, Y. Ren, G. Xu, X. Sun, K. Amine, H. Yu, Adv. Mater. 2021, 33, 2001358.

[20]

X. Ju, X. Hou, Z. Liu, H. Zheng, H. Huang, B. Qu, T. Wang, Q. Li, J. Li, J. Power, Sources 2019, 437, 226902.

[21]

J.-L. Shi, D.-D. Xiao, M. Ge, X. Yu, Y. Chu, X. Huang, X.-D. Zhang, Y.-X. Yin, X.-Q. Yang, Y.-G. Guo, L. Gu, L.-J. Wan, Adv. Mater. 2018, 30, 1705575.

[22]

N. Hu, C. Zhang, K. Song, H. Wu, P. Yang, L. Zhang, Chem. Eng. J. 2021, 415, 129042.

[23]

J. Lu, Q. Peng, W. Wang, C. Nan, L. Li, Y. Li, J. Am. Chem. Soc. 2013, 135, 1649.

[24]

H. Deng, P. Nie, H. Luo, Y. Zhang, J. Wang, X. Zhang, J. Mater. Chem. A 2014, 2, 18256.

[25]

M. Vijayakumar, S. Kerisit, Z. Yang, G. L. Graff, J. Liu, J. A. Sears, S. D. Burton, K. M. Rosso, J. Hu, J. Phys. Chem. C 2009, 113, 20108.

[26]

J. Cao, H. Xie, F. Lv, N. Xu, W. S. V. Lee, Y. Ma, Y. Liu, Z. Cheng, L. Chen, ACS Appl. Energy Mater. 2020, 3, 5462.

[27]

J.-Z. Kong, C. Ren, Y.-X. Jiang, F. Zhou, C. Yu, W.-P. Tang, H. Li, S.-Y. Ye, J.-X. Li, J. Solid State Electrochem. 2016, 20, 1435.

[28]

Y. Wang, L. Wang, X. Guo, T. Wu, Y. Yang, B. Wang, E. Wang, H. Yu, ACS Appl. Mater. Interfaces 2020, 12, 8306.

[29]

R.-P. Qing, J.-L. Shi, D.-D. Xiao, X.-D. Zhang, Y.-X. Yin, Y.-B. Zhai, L. Gu, Y.-G. Guo, Adv. Energy Mater. 2016, 6, 1501914.

[30]

S. Liu, Z. Liu, X. Shen, X. Wang, S.-C. Liao, R. Yu, Z. Wang, Z. Hu, C.-T. Chen, X. Yu, X. Yang, L. Chen, Adv. Energy Mater. 2019, 9, 19001530.

[31]

L. Ku, Y. Cai, Y. Ma, H. Zheng, P. Liu, Z. Qiao, Q. Xie, L. Wang, D.-L. Peng, Chem. Eng. J. 2019, 370, 499.

[32]

Y. Liu, L.-B. Tang, H.-X. Wei, X.-H. Zhang, Z.-J. He, Y.-J. Li, J.-C. Zheng, Nano Energy 2019, 65, 205111.

[33]

C. Liu, K. Qian, D. Lei, B. Li, F. Kang, Y.-B. He, J. Mater. Chem. A 2018, 6, 65.

[34]

P. Zhang, X. Zhai, H. Huang, J. Zhou, X. Li, Y. He, Z. Guo, Electrochim. Acta 2020, 349, 136402.

[35]

L. Li, L. Wang, X. Zhang, Q. Xue, L. Wei, F. Wu, R. Chen, ACS Appl. Mater. Interfaces 2017, 9, 1516.

[36]

H. Chen, M. S. Islam, Chem. Mater. 2016, 28, 6656.

[37]

A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S.-H. Kang, M. M. Thackeray, P. G. Bruce, J. Am. Chem. Soc. 2006, 128, 8694.

[38]

S.-L. Cui, Y.-Y. Wang, S. Liu, G.-R. Li, X.-P. Gao, Electrochim. Acta 2019, 328, 035501.

[39]

H. Yu, Y.-G. So, Y. Ren, T. Wu, G. Guo, R. Xiao, J. Lu, H. Li, Y. Yang, H. Zhou, R. Wang, K. Amine, Y. Ikuhara, J. Am. Chem. Soc. 2018, 140, 15279.

[40]

S.-L. Cui, X. Zhang, X.-W. Wu, S. Liu, Z. Zhou, G.-R. Li, X.-P. Gao, ACS Appl. Mater. Interfaces 2020, 12, 47655.

[41]

Z. Huang, T. Xiong, X. Lin, M. Tian, W. Zeng, J. He, M. Shi, J. Li, G. Zhang, L. Mai, S. Mu, J. Power Sources 2019, 432, 8.

[42]

Y. Ma, P. Liu, Q. Xie, G. Zhang, H. Zheng, Y. Cai, Z. Li, L. Wang, Z.-Z. Zhu, L. Mai, D.-L. Peng, Nano Energy 2019, 59, 184.

[43]

D. Mohanty, S. Kalnaus, R. A. Meisner, K. J. Rhodes, J. Li, E. A. Payzant, D. L. Wood III, C. Daniel, J. Power Sources 2013, 229, 239.

[44]

Q. Wu, X. Zhang, S. Sun, N. Wan, D. Pan, Y. Bai, H. Zhu, Y.-S. Hu, S. Dai, Nanoscale 2015, 7, 15609.

[45]

J.-L. Shi, D.-D. Xiao, X.-D. Zhang, Y.-X. Yin, Y.-G. Guo, L. Gu, L.-J. Wan, Nano Res. 2017, 10, 4201.

[46]

S. Pang, K. Xu, Y. Wang, X. Shen, W. Wang, Y. Su, M. Zhu, X. Xi, J. Power Sources 2017, 365, 68.

Energy & Environmental Materials
Article number: e12610
Cite this article:
Hu N, Yang Y, Li L, et al. A Facile Li2TiO3 Surface Modification to Improve the Structure Stability and Electrochemical Performance of Full Concentration Gradient Li-Rich Oxides. Energy & Environmental Materials, 2024, 7(3): e12610. https://doi.org/10.1002/eem2.12610
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return