AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Construction of Dynamic Alloy Interfaces for Uniform Li Deposition in Li-Metal Batteries

Qingwen Li1Yulu Liu1Ziheng Zhang1Jinjie Chen2Zelong Yang2Qibo Deng3( )Alexander V. Mumyatov4Pavel A. Troshin4,5,6Guang He1,2 ( )Ning Hu3
Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
Tianneng Co. Ltd, Huzhou 313100, China
Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, and School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Academician Semenov ave. 1, Chernogolovka Moscow Region 142432, Russia
Zhengzhou Research Institute of HIT, 26 Longyuan East 7th, Jinshui District, Zhengzhou 450000, Henan Province China
Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin 150001, China
Show Author Information

Abstract

It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors, but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals. Herein, we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition, arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution. As a comparison, other metals such as Au, Ag, and Zn have typical diffusion coefficients of 10–20 orders of magnitude lower than that of Hg in the similar solid solution phases. This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm−2. This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.

Electronic Supplementary Material

Download File(s)
eem-7-3-e12618_ESM.docx (4.1 MB)

References

[1]

H. Lee, H.-S. Lim, X. Ren, L. Yu, M. H. Engelhard, K. S. Han, J. Lee, H.-T. Kim, J. Xiao, J. Liu, W. Xu, J.-G. Zhang, ACS Energy Lett. 2018, 3, 2921.

[2]

H. Ye, Z.-J. Zheng, H.-R. Yao, S.-C. Liu, T.-T. Zuo, X.-W. Wu, Y.-X. Yin, N.-W. Li, J.-J. Gu, F.-F. Cao, Y.-G. Guo, Angew. Chem. Int. Ed. 2019, 131, 1106.

[3]

K. Nam, J. Baek, S. Seo, K. Kwak, J. Cha, Appl. Surf. Sci. 2022, 600, 154077.

[4]

J. Zhang, H. Zhang, R. Li, L. Lv, D. Lu, S. Zhang, X. Xiao, S. Geng, F. Wang, T. Deng, L. Chen, X. Fan, J. Energy Chem. 2023, 78, 71.

[5]

K. R. Adair, M. N. Banis, Y. Zhao, T. Bond, R. Li, X. Sun, Adv. Mater. 2020, 32, 2002550.

[6]

M. Agostini, M. Sadd, S. Xiong, C. Cavallo, J. Heo, J. H. Ahn, A. Matic, ChemSusChem 2019, 12, 4176.

[7]

H. Irfan, A. M. Shanmugharaj, Appl. Surf. Sci. 2022, 586, 152806.

[8]

K. Dong, Y. Xu, J. Tan, M. Osenberg, F. Sun, Z. Kochovski, D. T. Pham, S. Mei, A. Hilger, E. Ryan, Y. Lu, J. Banhart, I. Manke, ACS Energy Lett. 2021, 6, 1719.

[9]

S. Park, H.-J. Jin, Y. S. Yun, Adv. Mater. 2020, 32, 2002193.

[10]

P. Shi, X.-B. Cheng, T. Li, R. Zhang, H. Liu, C. Yan, X.-Q. Zhang, J.-Q. Huang, Q. Zhang, Adv. Mater. 2019, 31, 1902785.

[11]

S. Liu, Y. Ma, Z. Zhou, S. Lou, H. Huo, P. Zuo, J. Wang, C. Du, G. Yin, Y. Gao, Energy Storage Mater. 2020, 33, 423.

[12]

P. Bärmann, M. Mohrhardt, J. E. Frerichs, M. Helling, A. Kolesnikov, S. Klabunde, S. Nowak, M. R. Hansen, M. Winter, T. Placke, Adv. Energy Mater. 2021, 11, 2100925.

[13]

M. Wan, S. Kang, L. Wang, H.-W. Lee, G. W. Zheng, Y. Cui, Y. Sun, Nat. Commun. 2020, DOI: https://doi.org/10.1038/s41467-020-14550-3.

[14]

Z. Tu, S. Choudhury, M. J. Zachman, S. Wei, K. Zhang, L. F. Kourkoutis, L. A. Archer, Nat. Energy 2018, 3, 310.

[15]

Y. Ding, X. Guo, Y. Qian, L. Xue, A. Dolocan, G. Yu, Adv. Mater. 2020, 32, 2002577.

[16]

H. Zhao, Y. Wei, C. Wang, R. Qiao, W. Yang, P. B. Messersmith, G. Liu, ACS Appl. Mater. Interfaces 2018, 10, 5440.

[17]

Y. Liu, T. Chen, J. Xue, Z. Wang, J. Xing, A. Zhou, J. Li, Electrochim. Acta 2022, 405, 139787.

[18]

S. Chen, X. Yang, J. Zhang, J. Ma, Y. Meng, K. Tao, F. Li, J. Geng, Electrochim. Acta 2021, 368, 137626.

[19]

X. Wu, W. Zhang, N. Wu, S.-S. Pang, Y. Ding, G. He, Adv. Energy Mater. 2021, 11, 2003082.

[20]

S. Jin, Y. Ye, Y. Niu, Y. Xu, H. Jin, J. Wang, Z. Sun, A. Cao, X. Wu, Y. Luo, H. Ji, L.-J. Wan, J. Am. Chem. Soc. 2020, 142, 8818.

[21]

Y. Wang, Y. Guo, J. Zhong, M. Wang, L. Wang, S. Li, S. Chen, H. Deng, Y. Liu, Y. Wu, J. Zhu, B. Lu, J. Energy Chem. 2022, 73, 339.

[22]

Y.-K. Liao, Z. Tong, C.-C. Fang, S.-C. Liao, J.-M. Chen, R.-S. Liu, S.-F. Hu, ACS Appl. Mater. Interfaces 2021, 13, 56181.

[23]

K.-Y. Cho, S.-H. Hong, J. Kwon, H. Song, S. Kim, S. Jo, K. Eom, Appl. Surf. Sci. 2021, 554, 149578.

[24]

F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, J.-G. Zhang, J. Am. Chem. Soc. 2013, 135, 4450.

[25]

K. Yan, J. Wang, S. Zhao, D. Zhou, B. Sun, Y. Cui, G. Wang, Angew. Chem. Int. Ed. 2019, 131, 11486.

[26]

X.-R. Chen, Y.-X. Yao, C. Yan, R. Zhang, X.-B. Cheng, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 7743.

[27]

C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, L. Hu, Adv. Mater. 2017, 29, 1702714.

[28]

E. Lee, K. A. Persson, Nano Lett. 2012, 12, 4624.

[29]

H. Liu, X.-B. Cheng, J.-Q. Huang, S. Kaskel, S. Chou, H. S. Park, Q. Zhang, ACS Mater. Lett. 2019, 1, 217.

[30]

K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Nat. Energy 2016, DOI: 10.1038/nenergy.2016.10.

[31]

S. H. Choi, S. J. Lee, D.-J. Yoo, J. H. Park, J.-H. Park, Y. N. Ko, J. Park, Y.-E. Sung, S.-Y. Chung, H. Kim, J. W. Choi, Adv. Energy Mater. 2019, 9, 1902278.

[32]

P. Gao, H. Wu, X. Zhang, H. Jia, J.-M. Kim, M. H. Engelhard, C. Niu, Z. Xu, J.-G. Zhang, W. Xu, Angew. Chem. Int. Ed. 2021, 60, 16506.

[33]

H. A. Acciari, A. C. Guastaldi, C. M. A. Brett, Electrochim. Acta 2001, 46, 3887.

[34]

Y. Fan, T. Tao, Y. Gao, C. Deng, B. Yu, Y.-L. Chen, S. Lu, S. Huang, Adv. Mater. 2020, 32, 2004798.

[35]

Q. Li, G. He, Y. Ding, Chem. A Eur. J. 2021, 27, 6407.

[36]

G. He, Q. Li, Y. Shen, Y. Ding, Angew. Chem. Int. Ed. 2019, 131, 18637.

[37]
B. Predel, H. Landolt, In Phase equilibria, crystallographic and thermodynamic data of binary alloys, Springer, Landolt 1993.
[38]

S. Yuan, J. L. Bao, C. Li, Y. Xia, D. G. Truhlar, Y. Wang, Appl. Mater. Interfaces 2019, 11, 10616.

[39]

M. Huang, Z. Yao, Q. Yang, C. Li, Angew. Chem. Int. Ed. 2021, 133, 14159.

[40]

S. Chi, Q. Wang, B. Han, C. Luo, Y. Jiang, J. Wang, C. Wang, Y. Yu, Y. Deng, Nano Lett. 2020, 20, 2724.

[41]

Y. Zhang, J. Qian, W. Xu, S. M. Russell, X. Chen, E. Nasybulin, P. Bhattacharya, M. H. Engelhard, D. Mei, R. Cao, F. Ding, A. V. Cresce, K. Xu, J.-G. Zhang, Nano Lett. 2014, 14, 6889.

[42]

Z. Li, X. Huang, L. Kong, N. Qin, Z. Wang, L. Yin, Y. Li, Q. Gan, K. Liao, S. Gu, T. Zhang, H. Huang, L. Wang, G. Luo, X. Cheng, Z. Lu, Energy Storage Mater. 2022, 45, 40.

[43]

A. Hightower, C. C. Ahn, B. Fultz, Appl. Phys. Lett. 2000, 77, 238.

[44]

G. Sokolowski, W. Pilz, U. Weser, FEBS Lett. 1974, 48, 222.

[45]

K. N. Wood, G. Teeter, ACS Appl. Energy Mater. 2018, 1, 4493.

[46]

D. A. Porter, K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed., Springer, Van Nostrand Reinhold, New York, 1992.

[47]

I. V. Belova, Z.-K. Liu, G. E. Murch, Philos. Mag. Lett. 2021, 101, 123.

[48]

X. Liu, T. J. H. Vlugt, A. Bardow, Ind. Eng. Chem. Res. 2011, 50, 10350.

[49]

C. M. Eastman, Q. Zhang, J.-C. Zhao, J. Phase Equilib. Diff. 2020, 41, 642.

[50]

R. Guo, J. Wu, Y. Ren, Eng. Comput. 2003, 2021, 38.

[51]

S. Chen, L. Wang, R. Shao, J. Zou, R. Cai, J. Lin, C. Zhu, J. Zhang, F. Xu, J. Cao, J. Feng, J. Qi, P. Gao, Nano Energy 2018, 48, 560.

Energy & Environmental Materials
Article number: e12618
Cite this article:
Li Q, Liu Y, Zhang Z, et al. Construction of Dynamic Alloy Interfaces for Uniform Li Deposition in Li-Metal Batteries. Energy & Environmental Materials, 2024, 7(3): e12618. https://doi.org/10.1002/eem2.12618

36

Views

0

Downloads

8

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 29 January 2023
Revised: 13 March 2023
Published: 13 March 2023
© 2023 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return