PDF (2.9 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Atomically Dispersed Zinc Active Sites Efficiently Promote the Electrochemical Conversion of N2 to NH3

Yanjiao Wei1Xinyu Wang1Mengjie Sun1Min Ma1Jian Tian1,2()Minhua Shao2,3 ()
School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
Show Author Information

Abstract

At present, the research on highly active and stable nitrogen reduction reaction catalysts is still challenging work for the electrosynthesis of ammonia (NH3). Herein, we synthesized atomically dispersed zinc active sites supported on N-doped carbon nanosheets (Zn/NC NSs) as an efficient nitrogen reduction reaction catalyst, which achieves a high ammonia yield of 46.62 μg h−1 mgcat.−1 at −0.85 V (vs RHE) and Faradaic efficiency of 95.8% at −0.70 V (vs RHE). In addition, Zn/NC NSs present great stability and selectivity, and there is no significant change in NH3 rate and Faradaic efficiencies after multiple cycles. The structural characterization shows that the active center in the nitrogen reduction reaction process is the Zn–N4 sites in the catalyst. DFT calculation confirms that Zn/NC with Zn–N4 configuration has a lower energy barrier for the formation of *NNH intermediate compared with pure N-doped carbon nanosheets (N-C NSs), thus promoting the hydrogenation kinetics in the whole nitrogen reduction reaction process.

Electronic Supplementary Material

Download File(s)
eem-7-3-e12630_ESM.docx (2.7 MB)

References

[1]

D. Liu, M. Chen, X. Du, H. Ai, K. H. Lo, S. Wang, S. Chen, G. Xing, X. Wang, H. Pan, Adv. Funct. Mater. 2021, 31, 2008983.

[2]

J. Chen, Y. Kang, W. Zhang, Z. Zhang, Y. Chen, Y. Yang, L. Duan, Y. Li, W. Li, Angew. Chem. Int. Ed. 2022, 61, e202203022.

[3]

B. Sun, P. Qiu, Z. Liang, Y. Xue, X. Zhang, L. Yang, H. Cui, J. Tian, Chem. Eng. J. 2021, 406, 127177.

[4]

Z. Xi, K. Shi, X. Xu, P. Jing, B. Liu, R. Gao, J. Zhang, Adv. Sci. 2022, 9, 2104245.

[5]

W. Zhang, K. Mao, J. Low, H. Liu, Y. Bo, J. Ma, Q. Liu, Y. Jiang, J. Yang, Y. Pan, Z. Qi, R. Long, L. Song, Y. Xiong, Nano Res. 2021, 14, 3234.

[6]

Y. Wang, T. J. Meyer, Chem 2019, 5, 496.

[7]

J. Zhao, X. Liu, X. Ren, X. Sun, D. Tian, Q. Wei, D. Wu, Appl. Catal. B Environ. 2021, 284, 119746.

[8]

D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi, Y. Zhang, J.-M. Yan, Q. Jiang, X.-B. Zhang, Adv. Mater. 2017, 29, 1604799.

[9]

Y. Xue, C. Ma, Q. Yang, X. Wang, S. An, X. Zhang, J. Tian, Chem. Eng. J. 2023, 457, 141146.

[10]

X. Chen, S. Zhang, X. Qian, Z. Liang, Y. Xue, X. Zhang, J. Tian, Y. Han, M. Shao, Appl. Catal. B Environ. 2022, 310, 121277.

[11]

T. Oshikiri, K. Ueno, H. Misawa, Angew. Chem. Int. Ed. 2016, 55, 3942.

[12]

L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C. T. Maravelias, G. A. Ozin, Joule 2018, 2, 1055.

[13]

X. Qian, C. Ma, U. B. Shahid, M. Sun, X. Zhang, J. Tian, M. Shao, ACS Catal. 2022, 12, 6385.

[14]

J. Zhao, L. Zhang, X.-Y. Xie, X. Li, Y. Ma, Q. Liu, W.-H. Fang, X. Shi, G. Cui, X. Sun, J. Mater. Chem. A 2018, 6, 24031.

[15]

A. R. Singh, B. A. Rohr, J. A. Schwalbe, M. Cargnello, K. Chan, T. F. Jaramillo, I. Chorkendorff, J. K. Nørskov, ACS Catal. 2017, 7, 706.

[16]

Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si, J. Zeng, Adv. Mater. 2018, 30, 1803498.

[17]

X. Xu, B. Sun, Z. Liang, H. Cui, J. Tian, ACS Appl. Mater. Interfaces 2020, 12, 26060.

[18]

V. Kordali, G. Kyriacou, C. Lambrou, Chem. Commun. 2000, 17, 1673.

[19]

Y. Zhang, L. Jiao, W. Yang, C. Xie, H. L. Jiang, Angew. Chem. Int. Ed. Engl. 2021, 60, 7607.

[20]

C.-Z. Yuan, K. Liang, X.-M. Xia, Z. K. Yang, Y.-F. Jiang, T. Zhao, C. Lin, T.-Y. Cheang, S.-L. Zhong, A.-W. Xu, Cat. Sci. Technol. 2019, 9, 3669.

[21]

R. Walczak, B. Kurpil, A. Savateev, T. Heil, J. Schmidt, Q. Qin, M. Antonietti, M. Oschatz, Angew. Chem. Int. Ed. Engl. 2018, 57, 10765.

[22]

L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lü, S. Bak, Z. Liang, S. Zhao, E. Stavitski, J. Luo, R. R. Adzic, H. L. Xin, Angew. Chem. Int. Ed. Engl. 2019, 58, 2321.

[23]

J. Yu, B. Chang, W. Yu, X. Li, D. Wang, Z. Xu, X. Zhang, H. Liu, W. Zhou, Carbon Energy 2022, 4, 237.

[24]

J. Zhang, H. Yang, B. Liu, Adv. Energy Mater. 2021, 11, 2002473.

[25]

C. Ling, Y. Ouyang, Q. Li, X. Bai, X. Mao, A. Du, J. Wang, Small Methods 2019, 3, 1800376.

[26]

H. Gong, Z. Wei, Z. Gong, J. Liu, G. Ye, M. Yan, J. Dong, C. Allen, J. Liu, K. Huang, R. Liu, G. He, S. Zhao, H. Fei, Adv. Funct. Mater. 2022, 32, 2106886.

[27]

J. Liu, Z. Gong, M. Yan, G. He, H. Gong, G. Ye, H. Fei, Small 2022, 18, 2103824.

[28]

H. Jeong, S. Shin, H. Lee, ACS Nano 2020, 14, 14355.

[29]

C. Choi, S. Back, N.-Y. Kim, J. Lim, Y.-H. Kim, Y. Jung, ACS Catal. 2018, 8, 7517.

[30]

S. Mukherjee, X. Yang, W. Shan, W. Samarakoon, S. Karakalos, D. A. Cullen, K. More, M. Wang, Z. Feng, G. Wang, G. Wu, Small Methods 2020, 4, 1900821.

[31]

Q. Qin, T. Heil, M. Antonietti, M. Oschatz, Small Methods 2018, 2, 1800202.

[32]

J. Li, H. Zhang, W. Samarakoon, W. Shan, D. A. Cullen, S. Karakalos, M. Chen, D. Gu, K. L. More, G. Wang, Z. Feng, Z. Wang, G. Wu, Angew. Chem. Int. Ed. Engl. 2019, 58, 18971.

[33]

Y. He, Q. Tan, L. Lu, J. Sokolowski, G. Wu, Electrochem. Energy Rev. 2019, 2, 231.

[34]

M. Chen, Y. He, J. S. Spendelow, G. Wu, ACS Energy Lett. 2019, 4, 1619.

[35]

I. Stassen, N. Campagnol, J. Fransaer, P. Vereecken, D. Devos, R. Ameloot, CrystEngComm 2013, 15, 9308.

[36]

Z. Yu, R. Zhou, M. Ma, R. Zhu, P. Miao, P. Liu, J. Kong, J. Mater. Sci. Technol. 2022, 114, 206.

[37]

J. Chen, Z. Li, X. Wang, X. Sang, S. Zheng, S. Liu, B. Yang, Q. Zhang, L. Lei, L. Dai, Y. Hou, Angew. Chem. Int. Ed. Engl. 2022, 61, e202111683.

[38]

L. Huang, L. Wang, Z. Zhang, X. Guo, X. Zhang, J. M. Chabu, P. Liu, F. Tang, J. Energy Chem. 2022, 71, 225.

[39]

Q. Wang, T. Ina, W.-T. Chen, L. Shang, F. Sun, S. Wei, D. Sun-Waterhouse, S. G. Telfer, T. Zhang, G. I. N. Waterhouse, Sci. Bull. 2020, 65, 1743.

[40]

M. Kunitski, N. Eicke, P. D. Huber, J. Köhler, S. Zeller, J. Voigtsberger, N. Schlott, K. Henrichs, H. Sann, F. Trinter, L. P. H. Schmidt, A. Kalinin, M. S. Schöffler, T. Jahnke, M. Lein, R. Dörner, Nat. Commun. 2019, 10(1), 1.

[41]

F. Yang, P. Song, X. Liu, B. Mei, W. Xing, Z. Jiang, L. Gu, W. Xu, Angew. Chem. Int. Ed. Engl. 2018, 57, 12303.

[42]

Y. Kong, Y. Li, X. Sang, B. Yang, Z. Li, S. Zheng, Q. Zhang, S. Yao, X. Yang, L. Lei, S. Zhou, G. Wu, Y. Hou, Adv. Mater. 2022, 34, 2103548.

[43]

W. Zheng, F. Chen, Q. Zeng, Z. Li, B. Yang, L. Lei, Q. Zhang, F. He, X. Wu, Y. Hou, Nanomicro Lett. 2020, 12, 108.

[44]

L. Han, S. Song, M. Liu, S. Yao, Z. Liang, H. Cheng, Z. Ren, W. Liu, R. Lin, G. Qi, X. Liu, Q. Wu, J. Luo, H. L. Xin, J. Am. Chem. Soc. 2020, 142, 12563.

[45]

B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537.

[46]

I. Petousis, D. Mrdjenovich, E. Ballouz, M. Liu, D. Winston, W. Chen, T. Graf, T. D. Schladt, K. A. Persson, F. B. Prinz, Sci. Data 2017, 4, 160134.

[47]

J. M. Munro, K. Latimer, M. K. Horton, S. Dwaraknath, K. A. Persson, NPJ Comput. Mater. 2020, 6, 112.

[48]

M. K. Horton, J. H. Montoya, M. Liu, K. A. Persson, NPJ Comput. Mater. 2019, 5, 64.

[49]

H. Liu, Y. Zhang, J. Luo, J. Energy Chem. 2020, 49, 51.

[50]

Z. Fang, P. Wu, Y. Qian, G. Yu, Angew. Chem. Int. Ed. Engl. 2021, 60, 4275.

[51]

X. Wang, Y. Wang, X. Sang, W. Zheng, S. Zhang, L. Shuai, B. Yang, Z. Li, J. Chen, L. Lei, N. M. Adli, M. K. H. Leung, M. Qiu, G. Wu, Y. Hou, Angew. Chem. Int. Ed. Engl. 2021, 60, 4192.

[52]

L. Shi, S. Bi, Y. Qi, R. He, K. Ren, L. Zheng, J. Wang, G. Ning, J. Ye, ACS Catal. 2022, 12, 7655.

[53]

S. Zhang, Q. Jiang, T. Shi, Q. Sun, Y. Ye, Y. Lin, L. R. Zheng, G. Wang, C. Liang, H. Zhang, H. Zhao, ACS Appl. Energy Mater. 2020, 3, 6079.

[54]

Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu, Q. Zhang, L. Meng, Z. Shi, L. Zheng, C. Wang, Z. Zhang, W. Zheng, ACS Catal. 2019, 9, 336.

[55]

D. Chen, M. Luo, S. Ning, J. Lan, W. Peng, Y.-R. Lu, T.-S. Chan, Y. Tan, Small 2022, 18, 2104043.

[56]

R. Zhang, L. Jiao, W. Yang, G. Wan, H.-L. Jiang, J. Mater. Chem. A 2019, 7, 26371.

[57]

W. H. Chen, Q. W. Chen, Q. Chen, C. Cui, S. Duan, Y. Kang, Y. Liu, Y. Liu, W. Muhammad, S. Shao, C. Tang, J. Wang, L. Wang, M. H. Xiong, L. Yin, K. Zhang, Z. Zhang, X. Zhen, J. Feng, C. Gao, Z. Gu, C. He, J. Ji, X. Jiang, W. Liu, Z. Liu, H. Peng, Y. Shen, L. Shi, X. Sun, H. Wang, J. Wang, H. Xiao, F. J. Xu, Z. Zhong, X. Z. Zhang, X. Chen, Sci. China Chem. 2022, 65, 1010.

Energy & Environmental Materials
Article number: e12630
Cite this article:
Wei Y, Wang X, Sun M, et al. Atomically Dispersed Zinc Active Sites Efficiently Promote the Electrochemical Conversion of N2 to NH3. Energy & Environmental Materials, 2024, 7(3): e12630. https://doi.org/10.1002/eem2.12630
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return