PDF (10.1 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Review | Open Access

Recent Progress and Regulation Strategies of Layered Materials as Cathode of Aqueous Zinc-Ion Batteries

Yuan Yuan1,2Si Wu3Xiaoxue Song2Jin Yong Lee2 ()Baotao Kang1 ()
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
Shandong Hi-Speed Engineering Test Co., Ltd., Jinan 250022, China
Show Author Information

Abstract

Aqueous zinc-ion batteries (ZIBs) have shown great potential in the fields of wearable devices, consumer electronics, and electric vehicles due to their high level of safety, low cost, and multiple electron transfer. The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward (de) intercalation-type storage mechanism of Zn2+ ions in their tunable interlayer spacing and their abilities to accommodate other guest ions or molecules. Nevertheless, the challenges of inadequate energy density, dissolution of active materials, uncontrollable byproducts, increased internal pressure, and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs. In this review, recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized. Finally, critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs.

References

[1]

P. D. Lund, Joule 2020, 4, 2543.

[2]

S. Wang, S. Jiao, D. Tian, H.-S. Chen, H. Jiao, J. Tu, Y. Liu, D.-N. Fang, Adv. Mater. 2017, 29, 1606349.

[3]

C. Wang, L. Su, N. Wang, D. Lv, D. Wang, J. Yang, Y. Qian, J. Mater. Chem. A 2022, 10, 4060.

[4]

M. Song, H. Tan, D. Chao, H. J. Fan, Adv. Funct. Mater. 2018, 28, 1802564.

[5]

K. Zhu, Z. Li, Z. Sun, P. Liu, T. Jin, X. Chen, H. Li, W. Lu, L. Jiao, Small 2022, 18, 2107662.

[6]

C.-H. Chang, K.-T. Chen, Y.-Y. Hsieh, C.-B. Chang, H.-Y. Tuan, ACS Nano 2022, 16, 1486.

[7]

W. Xia, Y. Zhao, F. Zhao, K. Adair, R. Zhao, S. Li, R. Zou, Y. Zhao, X. Sun, Chem. Rev. 2022, 122, 3763.

[8]

J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang, X. Zhang, J. Qin, Z.-S. Wu, Adv. Energy Mater. 2021, 11, 2101299.

[9]

X. Jia, C. Liu, Z. G. Neale, J. Yang, G. Cao, Chem. Rev. 2020, 120, 7795.

[10]

Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Adv. Energy Mater. 2021, 11, 2003065.

[11]

P. Xiao, L. Xue, Y. Guo, L. Hu, C. Cui, H. Li, T. Zhai, Sci. Bull. 2021, 66, 545.

[12]

W. Du, E. H. Ang, Y. Yang, Y. Zhang, M. Ye, C. C. Li, Energy Environ. Sci. 2020, 13, 3330.

[13]

Z. Li, H. Wang, Y. Zhong, L. Yuan, Y. Huang, Z. Li, ACS Appl. Mater. Interfaces 2022, 14, 9097.

[14]

F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Nat. Mater. 2018, 17, 543.

[15]

Q. Yang, X. Li, Z. Chen, Z. Huang, C. Zhi, Acc. Mater. Res. 2022, 3, 78.

[16]

X. Li, S. Zhao, G. Qu, X. Wang, P. Hou, G. Zhao, X. Xu, J. Mater. Sci. Technol. 2022, 118, 190.

[17]

J. Cao, D. Zhang, Y. Yue, T. Pakornchote, T. Bovornratanaraks, X. Zhang, Z. Zeng, J. Qin, Y. Huang, ACS Appl. Mater. Interfaces 2022, 14, 7909.

[18]

J. Zheng, C. Zhan, K. Zhang, W. Fu, Q. Nie, M. Zhang, Z. Shen, ChemSusChem 2022, 15, e202200075.

[19]

G. Yoo, B.-R. Koo, G. H. An, Chem. Eng. J. 2022, 434, 134738.

[20]

S. Chen, K. Li, K. S. Hui, J. Zhang, Adv. Funct. Mater. 2020, 30, 2003890.

[21]

X. Zhao, L. Mao, Q. Cheng, F. Liao, G. Yang, X. Lu, L. Chen, Energy Stor. Mater. 2021, 38, 397.

[22]

J. Zhou, Z. Lin, H. Ren, X. Duan, I. Shakir, Y. Huang, X. Duan, Adv. Mater. 2021, 33, 2004557.

[23]

J. Zhang, Q. Lei, Z. Ren, X. Zhu, J. Li, Z. Li, S. Liu, Y. Ding, Z. Jiang, J. Li, Y. Huang, X. Li, X. Zhou, Y. Wang, D. Zhu, M. Zeng, L. Fu, ACS Nano 2021, 15, 17748.

[24]

H. Geng, M. Cheng, B. Wang, Y. Yang, Y. Zhang, C. C. Li, Adv. Funct. Mater. 2020, 30, 1907684.

[25]

X.-Z. Zhai, J. Qu, S.-M. Hao, Y.-Q. Jing, W. Chang, J. Wang, W. Li, Y. Abdelkrim, H. Yuan, Z.-Z. Yu, Nano-Micro Lett. 2020, 12, 56.

[26]

L. Wang, Z. Cao, P. Zhuang, J. Li, H. Chu, Z. Ye, D. Xu, H. Zhang, J. Shen, M. Ye, ACS Appl. Mater. Interfaces 2021, 13, 13338.

[27]

T. Xiong, Y. Wang, B. Yin, W. Shi, W. S. V. Lee, J. Xue, Nano-Micro Lett. 2019, 12, 8.

[28]

S. Wei, S. Chen, X. Su, Z. Qi, C. Wang, B. Ganguli, P. Zhang, K. Zhu, Y. Cao, Q. He, D. Cao, X. Guo, W. Wen, X. Wu, P. M. Ajayan, L. Song, Energy Environ. Sci. 2021, 14, 3954.

[29]

Y. Gao, Z. Liu, S. Guo, X. Cao, G. Fang, J. Zhou, S. Liang, Energy Environ. Mater. 2022, 5, 186.

[30]

Y. Liu, J. Xu, J. Li, Z. Yang, C. Huang, H. Yu, L. Zhang, J. Shu, Coord. Chem. Rev. 2022, 460, 214477.

[31]

S. Chen, D. Zhao, L. Chen, G. Liu, Y. Ding, Y. Cao, Z. Chen, Small Struct. 2021, 2, 2100082.

[32]

B. Sambandam, S. Kim, D. T. Pham, V. Mathew, J. Lee, S. Lee, V. Soundharrajan, S. Kim, M. H. Alfaruqi, J.-Y. Hwang, J. Kim, Energy Stor. Mater. 2021, 35, 47.

[33]

T.-F. Yi, L. Qiu, J.-P. Qu, H. Liu, J.-H. Zhang, Y.-R. Zhu, Coord. Chem. Rev. 2021, 446, 214124.

[34]

K. Zhu, T. Wu, K. Huang, Chem. Mater. 2021, 33, 4089.

[35]

C. Guo, H. Liu, J. Li, Z. Hou, J. Liang, J. Zhou, Y. Zhu, Y. Qian, Electrochim. Acta 2019, 304, 370.

[36]

L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X.-Q. Yang, K. Xu, O. Borodin, C. Wang, Nat. Nanotechnol. 2021, 16, 902.

[37]

M. Li, Q. Li, H. Yang, H. Li, Z. Xu, K. Chai, Z. Chen, Z. Liu, L. Tang, Z. Ma, B. Huang, X. Dong, Q. Yin, C. Z. Huang, ACS Nano 2020, 14, 541.

[38]

J. Zhu, T. Jian, Y. Wu, W. Ma, Y. Lu, L. Sun, F. Meng, B. Wang, F. Cai, J. Gao, G. Li, L. Yang, X. Yan, C. Xu, Appl. Surf. Sci. 2021, 544, 148882.

[39]

B. Tang, N. Tian, J. Jiang, Y. Li, J. Yang, Q. Zhu, J. Alloys Compd. 2022, 894, 162391.

[40]

Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou, A. Pan, S. Liang, Energy Stor. Mater. 2018, 13, 168.

[41]

S. Guo, G. Fang, S. Liang, M. Chen, X. Wu, J. Zhou, Acta Mater. 2019, 180, 51.

[42]

R. Li, F. Xing, T. Li, H. Zhang, J. Yan, Q. Zheng, X. Li, Energy Stor. Mater. 2021, 38, 590.

[43]

H. Jiang, Y. Zhang, Z. Pan, L. Xu, J. Zheng, Z. Gao, T. Hu, C. Meng, J. Wang, Mater. Chem. Front. 2020, 4, 1434.

[44]

L. Xu, Y. Zhang, J. Zheng, H. Jiang, T. Hu, C. Meng, Energy 2020, 18, 100509.

[45]

T. He, S. Weng, Y. Ye, J. Cheng, X. Wang, X. Wang, B. Wang, Energy Stor. Mater. 2021, 38, 389.

[46]

Z. Wu, C. Lu, F. Ye, L. Zhang, L. Jiang, Q. Liu, H. Dong, Z. Sun, L. Hu, Adv. Funct. Mater. 2021, 31, 2106816.

[47]

D. He, Y. Peng, Y. Ding, X. Xu, Y. Huang, Z. Li, X. Zhang, L. Hu, J. Power Sources 2021, 484, 229284.

[48]

Y. Zhao, P. Zhang, J. Liang, X. Xia, L. Ren, L. Song, W. Liu, X. Sun, Energy Stor. Mater. 2022, 47, 424.

[49]

M. Liras, M. Barawi, V. A. de la Peña O'Shea, Chem. Soc. Rev. 2019, 48, 5454.

[50]

C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Chem. Rev. 2017, 117, 6225.

[51]

Z. Wu, C. Lu, Y. Wang, L. Zhang, L. Jiang, W. Tian, C. Cai, Q. Gu, Z. Sun, L. Hu, Small 2020, 16, 2000698.

[52]

A. Moretti, S. Passerini, Adv. Energy Mater. 2016, 6, 1600868.

[53]

Y. Yue, H. Liang, Adv. Energy Mater. 2017, 7, 1602545.

[54]

A. Meena, M. Ha, S. Chandrasekaran, S. Sultan, P. Thangavel, A. Harzandi, B. Singh, J. Tiwari, K. Kim, J. Mater. Chem. A 2019, 7, 15794.

[55]

M. Liu, B. Su, Y. Tang, X. Jiang, A. Yu, Adv. Energy Mater. 2017, 7, 1700885.

[56]

J. Wang, H. Tang, L. Zhang, H. Ren, R. Yu, Q. Jin, J. Qi, D. Mao, M. Yang, Y. Wang, P. Liu, Y. Zhang, Y. Wen, L. Gu, G. Ma, Z. Su, Z. Tang, H. Zhao, D. Wang, Nat. Energy 2016, 1, 16050.

[57]

D. Kundu, B. Adams, V. Duffort, S. Vajargah, L. Nazar, Nat. Energy 2016, 1, 16119.

[58]

X. Xu, F. Xiong, J. Meng, X. Wang, C. Niu, Q. An, L. Mai, Adv. Funct. Mater. 2020, 30, 1904398.

[59]

W. Zhang, C. Zuo, C. Tang, W. Tang, B. Lan, X. Fu, S. Dong, P. Luo, Energ. Technol. 2021, 9, 2000789.

[60]

J. Hyoung, J. W. Heo, M. S. Chae, S.-T. Hong, ChemSusChem 2019, 12, 1069.

[61]

F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang, L. Song, Z. Niu, J. Chen, Angew. Chem. Int. Ed. 2019, 58, 7062.

[62]

H.-Y. Shi, Y. Song, Z. Qin, C. Li, D. Guo, X.-X. Liu, X. Sun, Angew. Chem. Int. Ed. 2019, 58, 16057.

[63]

L. Liu, Y.-C. Wu, L. Huang, K. Liu, B. Duployer, P. Rozier, P.-L. Taberna, P. Simon, Adv. Energy Mater. 2021, 11, 2101287.

[64]

N. Xu, Q. Nie, L. Luo, C. Yao, Q. Gong, Y. Liu, X. Zhou, J. Qiao, ACS Appl. Mater. Interfaces 2019, 11, 578.

[65]

Y. Jiang, D. Ba, Y. Li, J. Liu, Adv. Sci. 2020, 7, 1902795.

[66]

M. H. Alfaruqi, J. Gim, S. Kim, J. Song, D. T. Pham, J. Jo, Z. Xiu, V. Mathew, J. Kim, Electrochem. Commun. 2015, 60, 121.

[67]

K. W. Nam, H. Kim, J. H. Choi, J. W. Choi, Energy Environ. Sci. 1999, 2019, 12.

[68]

Y. Gogotsi, B. Anasori, ACS Nano 2019, 13, 8491.

[69]

N. R. Hemanth, B. Kandasubramanian, Chem. Eng. J. 2020, 392, 123678.

[70]

R. Anand, A. S. Nissimagoudar, M. Umer, M. Ha, M. Zafari, S. Umer, G. Lee, K. S. Kim, Adv. Energy Mater. 2021, 11, 2102388.

[71]

A. Liu, X. Liang, X. Ren, W. Guan, T. Ma, Electrochem. Energy Rev. 2022, 5, 112.

[72]

R. Anand, B. Ram, M. Umer, M. Zafari, S. Umer, G. Lee, K. S. Kim, J. Mater. Chem. A 2022, 10, 22500.

[73]

D. Xu, Z. Li, L. Li, J. Wang, Adv. Funct. Mater. 2020, 30, 2000712.

[74]

R. Venkatkarthick, N. Rodthongkum, X. Zhang, S. Wang, P. Pattananuwat, Y. Zhao, R. Liu, J. Qin, ACS Appl. Energy Mater. 2020, 3, 4677.

[75]

X. Li, M. Li, Q. Yang, G. Liang, Z. Huang, L. Ma, D. Wang, F. Mo, B. Dong, Q. Huang, C. Zhi, Adv. Energy Mater. 2020, 10, 2001791.

[76]

B. Chen, D. Chao, E. Liu, M. Jaroniec, N. Zhao, S.-Z. Qiao, Energy Environ. Sci. 2020, 13, 1096.

[77]

W. S. V. Lee, T. Xiong, X. Wang, J. Xue, Small Methods 2021, 5, 2000815.

[78]

W. Ling, P. Wang, Z. Chen, H. Wang, J. Wang, Z. Ji, J. Fei, Z. Ma, N. He, Y. Huang, ChemElectroChem 2020, 7, 2957.

[79]

Y. Wang, Z. Wu, L. Jiang, W. Tian, C. Zhang, C. Cai, L. Hu, Nanoscale Adv. 2019, 1, 4365.

[80]

B. Yong, D. Ma, Y. Wang, H. Mi, C. He, P. Zhang, Adv. Energy Mater. 2020, 10, 2002354.

[81]

S. Li, Y. Liu, X. Zhao, Q. Shen, W. Zhao, Q. Tan, N. Zhang, P. Li, L. Jiao, X. Qu, Adv. Mater. 2021, 33, 2007480.

[82]

D. Xu, H. Wang, F. Li, Z. Guan, R. Wang, B. He, Y. Gong, X. Hu, Adv. Mater. Interfaces 2019, 6, 1801506.

[83]

L. Chen, C. Hao, Y. Zhang, Y. Wei, L. Dai, J. Cheng, H. Zhang, L. Ci, J. Energy Chem. 2021, 60, 480.

[84]

C. Wu, H. Tan, W. Huang, C. Liu, W. Wei, L. Chen, Q. Yan, Energy 2021, 19, 100595.

[85]

Q. Xie, G. Cheng, T. Xue, L. Huang, S. Chen, Y. Sun, M. Sun, H. Wang, L. Yu, Energy 2022, 24, 100934.

[86]

Q. Pang, W. He, X. Yu, S. Yang, H. Zhao, Y. Fu, M. Xing, Y. Tian, X. Luo, Y. Wei, Appl. Surf. Sci. 2021, 538, 148043.

[87]

Z. Wu, Y. Wang, L. Zhang, L. Jiang, W. Tian, C. Cai, J. Price, Q. Gu, L. Hu, ACS Appl. Energy Mater. 2020, 3, 3919.

[88]

L. Hu, Z. Wu, C. Lu, F. Ye, Q. Liu, Z. Sun, Energy Environ. Sci. 2021, 14, 4095.

[89]

M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K. T. Mueller, L. Mai, J. Liu, J. Yang, Adv. Mater. 2018, 30, 1703725.

[90]

H. Yu, M. Aakyiir, S. Xu, J. D. Whittle, D. Losic, J. Ma, Mater. Today Energy 2021, 21, 100757.

[91]

H. Zhang, W. Wu, Q. Liu, F. Yang, X. Shi, X. Liu, M. Yu, X. Lu, Angew. Chem. Int. Ed. 2021, 60, 896.

[92]

Y. Jiang, Z. Wu, F. Ye, R. Pang, L. Zhang, Q. Liu, X. Chang, S. Sun, Z. Sun, L. Hu, Energy Stor. Mater. 2021, 42, 286.

[93]

Y. Wang, F. Ye, Z. Wu, L. Jiang, L. Zhang, L. Hu, ACS Appl. Energy Mater. 2021, 4, 4138.

[94]

Z. Fang, B. Bueken, D. E. De Vos, R. A. Fischer, Angew. Chem. Int. Ed. 2015, 54, 7234.

[95]

Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou, R. Chen, Y. Wang, C. Jia, S. Wang, Adv. Mater. 2020, 32, 1905923.

[96]

A. N. Singh, M.-H. Kim, A. Meena, T.-U. Wi, H.-W. Lee, K. S. Kim, Small 2021, 17, 2005605.

[97]

M. Ha, A. Hajibabaei, D. Y. Kim, A. N. Singh, J. Yun, C. W. Myung, K. S. Kim, Adv. Energy Mater. 2022, 12, 2201497.

[98]

L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Angew. Chem. Int. Ed. 2016, 55, 5277.

[99]

L. Tao, M. Qiao, R. Jin, Y. Li, Z. Xiao, Y. Wang, N. Zhang, C. Xie, Q. He, D. Jiang, G. Yu, Y. Li, S. Wang, Angew. Chem. Int. Ed. 2019, 58, 1019.

[100]

C. Zhu, G. Fang, S. Liang, Z. Chen, Z. Wang, J. Ma, H. Wang, B. Tang, X. Zheng, J. Zhou, Energy Stor. Mater. 2020, 24, 394.

[101]

M. Han, J. Huang, S. Liang, L. Shan, X. Xie, Z. Yi, Y. Wang, S. Guo, J. Zhou iScience 2020, 23, 100797.

[102]

P. Ge, S. Yuan, W. Zhao, L. Zhang, Y. Yang, L. Xie, L. Zhu, X. Cao, X. Ji, ACS Appl. Energy Mater. 2021, 4, 10783.

[103]

D. Wang, L. Wang, G. Liang, H. Li, Z. Liu, Z. Tang, J. Liang, C. Zhi, ACS Nano 2019, 13, 10643.

[104]

Y. Dong, S. Zhang, X. Du, S. Hong, S. Zhao, Y. Chen, X. Chen, H. Song, Adv. Funct. Mater. 2019, 29, 1901127.

Energy & Environmental Materials
Article number: e12632
Cite this article:
Yuan Y, Wu S, Song X, et al. Recent Progress and Regulation Strategies of Layered Materials as Cathode of Aqueous Zinc-Ion Batteries. Energy & Environmental Materials, 2024, 7(3): e12632. https://doi.org/10.1002/eem2.12632
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return