PDF (2.5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Dual Additives for Stabilizing Li Deposition and SEI Formation in Anode-Free Li-Metal Batteries

Baolin Wu1,2Chunguang Chen3,4()Dmitri L. Danilov1,5()Zhiqiang Chen5Ming Jiang6Rüdiger-A. Eichel1,2Peter H. L. Notten1,5,7 ()
Forschungszentrum Jülich (IEK-9), D-52425, Jülich Germany
RWTH Aachen University, D-52074, Aachen Germany
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Eindhoven University of Technology, P.O. Box 513 5600 MB, Eindhoven The Netherlands
School of Electronics and Information, Institute of Carbon Neutrality and New Energy, Hangzhou Dianzi University, Hangzhou 310018, China
University of Technology Sydney, Broadway, Sydney NSW 2007, Australia
Show Author Information

Abstract

Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy. However, the accumulative Li dendrites and dead Li continuously consume active Li during cycling. That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries. Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase (SEI) stability for anode-free Li-metal batteries. Herein, we reveal that introducing dual additives, composed of LiAsF6 and fluoroethylene carbonate, into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC||Cu anode-free Li-metal batteries. The NMC||Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75% after 50 cycles, much higher than those with bare electrolytes (35%). The average Coulombic efficiency of the NMC||Cu anode-free Li-metal batteries with additives can maintain 98.3% over 100 cycles. In contrast, the average Coulombic efficiency without additives rapidly decline to 97% after only 50 cycles. In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition. The dual additives significantly suppress the Li dendrite growth, enabling stable SEI formation on anode and cathode surfaces. Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.

Electronic Supplementary Material

Download File(s)
eem-7-3-e12642_ESM.docx (713.5 KB)

References

[1]

H. Kim, G. Jeong, Y.-U. Kim, J.-H. Kim, C.-M. Park, H.-J. Sohn, Chem. Soc. Rev. 2013, 42, 9011.

[2]

X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403.

[3]

H. H. Weldeyohannes, L. H. Abrha, Y. Nikodimos, K. N. Shitaw, T. M. Hagos, C.-J. Huang, C.-H. Wang, S.-H. Wu, W.-N. Su, B. J. Hwang, J. Power Sources 2021, 506, 230204.

[4]

D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.

[5]

P. Albertus, S. Babinec, S. Litzelman, A. Newman, Nat. Energy 2018, 3, 16.

[6]

L. Lin, L. Suo, Y. S. Hu, H. Li, X. Huang, L. Chen, Adv. Energy Mater. 2021, 11, 2003709.

[7]

B. A. Jote, K. N. Shitaw, M. A. Weret, S.-C. Yang, C.-J. Huang, C.-H. Wang, Y.-T. Weng, S.-H. Wu, W.-N. Su, B. J. Hwang, J. Power Sources 2022, 532, 231303.

[8]

M. Genovese, A. J. Louli, R. Weber, S. Hames, J. R. Dahn, J. Electrochem. Soc. 2018, 165, A3321.

[9]

C. J. Huang, B. Thirumalraj, H. C. Tao, K. N. Shitaw, H. Sutiono, T. T. Hagos, T. T. Beyene, L. M. Kuo, C. C. Wang, S. H. Wu, W. N. Su, B. J. Hwang, Nat. Commun. 2021, 12, 1452.

[10]

D. W. Kang, J. Moon, H.-Y. Choi, H.-C. Shin, B. G. Kim, J. Power Sources 2021, 490, 229504.

[11]

J. Qian, B. D. Adams, J. Zheng, W. Xu, W. A. Henderson, J. Wang, M. E. Bowden, S. Xu, J. Hu, J.-G. Zhang, Adv. Funct. Mater. 2016, 26, 7094.

[12]

Z. Xie, Z. Wu, X. An, X. Yue, J. Wang, A. Abudula, G. Guan, Energy Storage Mater. 2020, 32, 386.

[13]

S. Nanda, A. Gupta, A. Manthiram, Adv. Energy Mater. 2021, 11, 2000804.

[14]

D.-J. Yoo, K. J. Kim, J. W. Choi, Adv. Energy Mater. 2018, 8, 1702744.

[15]

B. Wu, C. Chen, L. H. J. Raijmakers, J. Liu, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, Energy Storage Mater. 2023, 57, 508.

[16]

A. M. Haregewoin, A. S. Wotango, B.-J. Hwang, Energy Environ. Sci. 2016, 9, 1955.

[17]

J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang, W. Xu, Nat. Energy 2017, 2, 17012.

[18]

D. Huang, C. Zeng, M. Liu, X. Chen, Y. Li, S. Hu, Q. Pan, F. Zheng, Q. Li, H. Wang, Chem. Eng. J. 2023, 454, 140395.

[19]

H. Ye, Y. X. Yin, S. F. Zhang, Y. Shi, L. Liu, X. X. Zeng, R. Wen, Y. G. Guo, L. J. Wan, Nano Energy 2017, 36, 411.

[20]

A. A. Assegie, C. C. Chung, M. C. Tsai, W. N. Su, C. W. Chen, B. J. Hwang, Nanoscale 2019, 11, 2710.

[21]

S. Li, Z. Luo, L. Li, J. Hu, G. Zou, H. Hou, X. Ji, Energy Storage Mater. 2020, 32, 306.

[22]

K. Lu, C. Chen, Y. Wu, C. Liu, J. Song, H. Jing, P. Zhao, B. Liu, M. Xia, Q. Hao, W. Lei, Chem. Eng. J. 2023, 457, 141287.

[23]

Z. L. Brown, S. Jurng, B. L. Lucht, J. Electrochem. Soc. 2017, 164, A2186.

[24]

Z. T. Wondimkun, T. T. Beyene, M. A. Weret, N. A. Sahalie, C.-J. Huang, B. Thirumalraj, B. A. Jote, D. Wang, W.-N. Su, C.-H. Wang, G. Brunklaus, M. Winter, B.-J. Hwang, J. Power Sources 2020, 450, 227589.

[25]

Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao, D. G. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Y. Zheng, C. V. Amanchukwu, S. T. Hung, Y. Ma, E. G. Lomeli, J. Qin, Y. Cui, Z. Bao, Nat. Energy 2020, 5, 526.

[26]

T. Li, X.-Q. Zhang, P. Shi, Q. Zhang, Joule 2019, 3, 2647.

[27]

T. M. Hagos, G. B. Berhe, T. T. Hagos, H. K. Bezabh, L. H. Abrha, T. T. Beyene, C.-J. Huang, Y.-W. Yang, W.-N. Su, H. Dai, B.-J. Hwang, Electrochim. Acta 2019, 316, 52.

[28]

B. T. Hotasi, T. M. Hagos, C. J. Huang, S.-K. Jiang, B. A. Jote, K. N. Shitaw, H. K. Bezabh, C.-H. Wang, W.-N. Su, S.-H. Wu, B. J. Hwang, J. Power Sources 2022, 548, 232047.

[29]

J. Zhang, H. Zhang, L. Deng, Y. Yang, L. Tan, X. Niu, Y. Chen, L. Zeng, X. Fan, Y. Zhu, Energy Storage Mater. 2023, 54, 450.

[30]

T. T. Hagos, B. Thirumalraj, C. J. Huang, L. H. Abrha, T. M. Hagos, G. B. Berhe, H. K. Bezabh, J. Cherng, S. F. Chiu, W. N. Su, B. J. Hwang, ACS Appl. Mater. Interfaces 2019, 11, 9955.

[31]

A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nano Lett. 2017, 17, 1132.

[32]

K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Nat. Energy 2016, 1, 16010.

[33]

J.-J. Woo, V. A. Maroni, G. Liu, J. T. Vaughey, D. J. Gosztola, K. Amine, Z. Zhang, J. Electrochem. Soc. 2014, 161, A827.

[34]

A. von Wald Cresce, O. Borodin, K. Xu, J. Phys. Chem. C 2012, 116, 26111.

[35]

X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, Q. Zhang, Adv. Sci. 2016, 3, 1500213.

[36]

F. Han, Z. Chang, X. Liu, A. Li, J. Wang, H. Ding, S. Lu, J. Phys. Conf. Ser. 2021, 2009, 012069.

[37]

X. Ren, Y. Zhang, M. H. Engelhard, Q. Li, J.-G. Zhang, W. Xu, ACS Energy Lett. 2017, 3, 14.

[38]

H. Xiang, P. Shi, P. Bhattacharya, X. Chen, D. Mei, M. E. Bowden, J. Zheng, J.-G. Zhang, W. Xu, J. Power Sources 2016, 318, 170.

[39]

R. Schmitz, R. Müller, S. Krüger, R. W. Schmitz, S. Nowak, S. Passerini, M. Winter, C. Schreiner, J. Power Sources 2012, 217, 98.

[40]

R. Schmitz, R. Ansgar Müller, R. Wilhelm Schmitz, C. Schreiner, M. Kunze, A. Lex-Balducci, S. Passerini, M. Winter, J. Power Sources 2013, 233, 110.

[41]

N. Koura, S. Kohara, K. Takeuchi, S. Takahashi, L. A. Curtiss, M. Grimsditch, M.-L. Saboungi, J. Mol. Struct. 1996, 382, 163.

[42]

P. Verma, P. Maire, P. Novák, Electrochim. Acta 2010, 55, 6332.

[43]

C. Chen, T. Zhou, D. L. Danilov, L. Gao, S. Benning, N. Schön, S. Tardif, H. Simons, F. Hausen, T. U. Schülli, R. A. Eichel, P. H. L. Notten, Nat. Commun. 2020, 11, 3283.

[44]

K. Schroder, J. Alvarado, T. A. Yersak, J. Li, N. Dudney, L. J. Webb, Y. S. Meng, K. J. Stevenson, Chem. Mater. 2015, 27, 5531.

[45]

R. E. Ruther, A. F. Callender, H. Zhou, S. K. Martha, J. Nanda, J. Electrochem. Soc. 2014, 162, A98.

[46]

X. Zhang, A. Mauger, Q. Lu, H. Groult, L. Perrigaud, F. Gendron, C. M. Julien, Electrochim. Acta 2010, 55, 6440.

[47]

C. Sole, N. E. Drewett, L. J. Hardwick, Faraday Discuss. 2014, 172, 223.

[48]

S. Jiao, J. Zheng, Q. Li, X. Li, M. H. Engelhard, R. Cao, J.-G. Zhang, W. Xu, Joule 2018, 2, 110.

[49]

A. J. Louli, M. Coon, M. Genovese, J. deGooyer, A. Eldesoky, J. R. Dahn, J. Electrochem. Soc. 2021, 168, 020515.

[50]

P. Dan, E. Mengeritsky, D. Aurbach, I. Weissman, E. Zinigrad, J. Power Sources 1997, 68, 443.

[51]

S. Jovanovic, P. Jakes, S. Merz, R. A. Eichel, J. Granwehr, Electrochem. Sci. Adv. 2022, 2, e2100068.

Energy & Environmental Materials
Article number: e12642
Cite this article:
Wu B, Chen C, Danilov DL, et al. Dual Additives for Stabilizing Li Deposition and SEI Formation in Anode-Free Li-Metal Batteries. Energy & Environmental Materials, 2024, 7(3): e12642. https://doi.org/10.1002/eem2.12642
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return