PDF (9.5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Improved Flexible Triboelectric Nanogenerator Based on Tile-Nanostructure for Wireless Human Health Monitor

Huamin Chen1,2 ()Shujun Guo1Shaochun Zhang3,4Yu Xiao3,4Wei Yang1Zhaoyang Sun1Xu Cai1Run Fang1Huining Wang5Yun Xu3,4Jun Wang1()Zhou Li2()
Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
Faculty of Science and Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
Show Author Information

Abstract

Triboelectric nanogenerators (TENGs) have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility, biocompatibility, and miniaturization. In this study, an improved flexible TENG with a tile-nanostructured MXene/polymethyl methacrylate (PMMA) composite electrode (MP-TENG) is proposed for use in wireless human health monitor. The multifunctional tile-nanostructured MXene/PMMA film, which is self-assembled through vacuum filtration, exhibits good conductivity, excellent charge capacity, and high flexibility. Thus, the MXene/PMMA composite electrode can simultaneously function as a charge-generating, charge-trapping, and charge-collecting layer. Furthermore, the charge-trapping capacity of a tile nanostructure can be optimized on the basis of the PMMA concentration. At a mass fraction of 4% PMMA, the MP-TENG achieves the optimal output performance, with an output voltage of 37.8 V, an output current of 1.8 μA, and transferred charge of 14.1 nC. The output power is enhanced over twofold compared with the pure MXene-based TENG. Moreover, the MP-TENG has sufficient power capacity and durability to power small electronic devices. Finally, a wireless human motion monitor based on the MP-TENG is utilized to detect physiological signals in various kinematic motions. Consequently, the proposed performance-enhanced MP-TENG proves a considerable potential for use in health monitoring, telemedicine, and self-powered systems.

Electronic Supplementary Material

Download File(s)
eem-7-4-e12654_ESM.docx (1.5 MB)

References

[1]

J. Dai, L. Li, B. Shi, Z. Li, Biosens. Bioelectron. 2021, 194, 113609.

[2]

Y. Wu, Y. Li, Y. Zou, W. Rao, Y. Gai, J. Xue, L. Wu, X. Qu, Y. Liu, G. Xu, L. Xu, Z. Liu, Z. Li, Nano Energy 2022, 92, 106715.

[3]

Y. Ma, Y. Zhang, S. Cai, Z. Han, X. Liu, F. Wang, Y. Cao, Z. Wang, H. Li, Y. Chen, X. Feng, Adv. Mater. 2020, 32, 1902062.

[4]

J. J. Kim, Y. Wang, H. Wang, S. Lee, T. Yokota, T. Someya, Adv. Funct. Mater. 2021, 31, 2170286.

[5]

X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado, H. Luan, J. Ruban, X. Ning, A. Akhtar, D. Li, B. Ji, Y. Liu, R. Sun, J. Cao, Q. Huo, Y. Zhong, C. Lee, S. Kim, P. Gutruf, C. Zhang, Y. Xue, Q. Guo, A. Chempakasseril, P. Tian, W. Lu, J. Jeong, Y. Yu, J. Cornman, C. Tan, B. Kim, K. Lee, X. Feng, Y. Huang, J. A. Rogers, Nature 2019, 575, 473.

[6]

J. D. N. Dionisio, W. G. Burns III, R. Gilbert, ACM Comput. Surv. 2013, 45, 34.

[7]

F.-R. Fan, Z.-Q. Tian, Z. Lin Wang, Nano Energy 2012, 1, 328.

[8]

Z. L. Wang, Mater. Today 2017, 20, 74.

[9]

Z. L. Wang, Nano Energy 2020, 68, 104272.

[10]

Y. Chen, Y. Jie, N. Wang, Z. L. Wang, X. Cao, Nano Energy 2020, 76, 105051.

[11]

F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z. L. Wang, Nano Lett. 2012, 12, 3109.

[12]

G. Zhu, J. Chen, Y. Liu, P. Bai, Y. S. Zhou, Q. Jing, C. Pan, Z. L. Wang, Nano Lett. 2013, 13, 2282.

[13]

Y. Yang, H. Zhang, J. Chen, Q. Jing, Y. S. Zhou, X. Wen, Z. L. Wang, ACS Nano 2013, 7, 7342.

[14]

S. Wang, Y. Xie, S. Niu, L. Lin, Z. L. Wang, Adv. Mater. 2014, 26, 2818.

[15]

C. Wang, X. Qu, Q. Zheng, Y. Liu, P. Tan, B. Shi, H. Ouyang, S. Chao, Y. Zou, C. Zhao, Z. Liu, Y. Li, Z. Li, ACS Nano 2021, 15, 10130.

[16]

Z. Zhao, C. Yan, Z. Liu, X. Fu, L. M. Peng, Y. Hu, Z. Zheng, Adv. Mater. 2016, 28, 10267.

[17]

J. Bae, J. Lee, S. Kim, J. Ha, B. S. Lee, Y. Park, C. Choong, J. B. Kim, Z. L. Wang, H. Y. Kim, J. J. Park, U. I. Chung, Nat. Commun. 2014, 5, 4929.

[18]

Y.-C. Lai, Y.-C. Hsiao, H.-M. Wu, Z. L. Wang, Adv. Sci. 2019, 6, 1801883.

[19]

H. Chen, C. Xing, Y. Li, J. Wang, Y. Xu, Sustain. Energy Fuels 2020, 4, 1063.

[20]

W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang, Y. Song, X. Deng, M. Leung, Z. Yang, R. X. Xu, Z. L. Wang, X. C. Zeng, Z. Wang, Nature 2020, 578, 392.

[21]

H. Chen, W. Yang, C. Zhang, M. Wu, W. Li, Y. Zou, L. Lv, H. Yu, H. Ke, R. Liu, Y. Xu, J. Wang, Z. Li, Nano Res. 2022, 15, 2465.

[22]

S. A. Khan, H. L. Zhang, Y. Xie, M. Gao, M. A. Shah, A. Qadir, Y. Lin, Adv. Eng. Mater. 2017, 19, 1600710.

[23]

S. Parandeh, M. Kharaziha, F. Karimzadeh, Nano Energy 2019, 59, 412.

[24]

J. Ma, J. Zhu, P. Ma, Y. Jie, Z. L. Wang, X. Cao, ACS Energy Lett. 2020, 5, 3005.

[25]

C. Chen, Z. Wen, J. Shi, X. Jian, P. Li, J. T. W. Yeow, X. Sun, Nat. Commun. 2020, 11, 4143.

[26]

Q. Wang, M. Chen, W. Li, Z. Li, Y. Chen, Y. Zhai, Nano Energy 2017, 41, 128.

[27]

Y. Su, G. Chen, C. Chen, Q. Gong, G. Xie, M. Yao, H. Tai, Y. Jiang, J. Chen, Adv. Mater. 2021, 33, 2101262.

[28]

J. Qin, X. Yang, C. Shen, Y. Chang, Y. Deng, Z. Zhang, H. Liu, C. Lv, Y. Li, C. Zhang, L. Dong, C. Shan, Nano Energy 2022, 101, 107549.

[29]

J. Sun, Y. Chang, J. Liao, S. Chang, S. Dai, Y. Shang, C. Shan, L. Dong, Nano Energy 2022, 99, 107392.

[30]

J. Zhao, Y. Xiao, W. Yang, S. Zhang, H. Wang, Q. Wang, Z. Sun, W. Li, M. Gao, Z. Wang, Y. Xu, H. Chen, J. Wang, Adv. Mater. Technol. 2023, 8, 2201769.

[31]

W. Yang, J. Chen, Q. Jing, J. Yang, X. Wen, Y. Su, G. Zhu, P. Bai, Z. L. Wang, Adv. Funct. Mater. 2014, 24, 4090.

[32]

D. Yoo, S. Lee, J.-W. Lee, K. Lee, E. Y. Go, W. Hwang, I. Song, S. B. Cho, D. W. Kim, D. Choi, J.-Y. Sim, D. S. Kim, Nano Energy 2020, 69, 104388.

[33]

S. Niu, X. Wang, F. Yi, Y. S. Zhou, Z. L. Wang, Nat. Commun. 2015, 6, 8975.

[34]

C. Shan, W. Liu, Z. Wang, X. Pu, W. He, Q. Tang, S. Fu, G. Li, L. Long, H. Guo, J. Sun, A. Liu, C. Hu, Energy Environ. Sci. 2021, 14, 5395.

[35]

W.-T. Cao, H. Ouyang, W. Xin, S. Chao, C. Ma, Z. Li, F. Chen, M.-G. Ma, Adv. Funct. Mater. 2020, 30, 2004181.

[36]

D. Y. Xie, Q. Ma, H. Qi, X. Liu, X. Chen, Y. Jin, D. Li, W. Yu, X. Dong, Nanoscale 2021, 13, 19144.

[37]

D. W. Kim, J. H. Lee, J. K. Kim, U. Jeong, NPG Asia Mater. 2020, 12, 6.

[38]

H. Chen, L. Bai, T. Li, C. Zhao, J. Zhang, N. Zhang, G. Song, Q. Gan, Y. Xu, Nano Energy 2018, 46, 73.

[39]

H. Y. Li, L. Su, S. Y. Kuang, C. F. Pan, G. Zhu, Z. L. Wang, Adv. Funct. Mater. 2015, 25, 5691.

[40]

S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu, Y. S. Zhou, Z. L. Wang, Adv. Mater. 2014, 26, 6720.

[41]

M. Seol, S. Kim, Y. Cho, K.-E. Byun, H. Kim, J. Kim, S. K. Kim, S.-W. Kim, H.-J. Shin, S. Park, Adv. Mater. 2018, 30, 1801210.

[42]

A. S. M. I. Uddin, P. S. Kumar, K. Hassan, H. C. Kim, Sens. Actuators B Chem. 2018, 258, 857.

[43]

S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K. S. Shin, D. Kim, S. K. Kim, K. H. Lee, H. J. Shin, D. W. Kim, S. W. Kim, Adv. Mater. 2014, 26, 3918.

[44]

C. Wu, T. W. Kim, J. H. Park, H. An, J. Shao, X. Chen, Z. L. Wang, ACS Nano 2017, 11, 8356.

[45]

S. Cheon, H. Kang, H. Kim, Y. Son, J. Y. Lee, H.-J. Shin, S.-W. Kim, J. H. Cho, Adv. Funct. Mater. 2018, 28, 1703778.

[46]

R. Wen, J. Guo, A. Yu, J. Zhai, Z. l. Wang, Adv. Funct. Mater. 2019, 29, 1807655.

[47]

M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. W. Barsoum, Nature 2014, 516, 78.

[48]

K. Ghosh, M. Pumera, Small Methods 2021, 5, 2100451.

[49]

Q. Wei, G. Chen, H. Pan, Z. Ye, C. Au, C. Chen, X. Zhao, Y. Zhou, X. Xiao, H. Tai, Y. Jiang, G. Xie, Y. Su, J. Chen, Small Methods 2022, 6, 2101051.

[50]

H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, J. L. Lutkenhaus, Sci. Adv. 2018, 4, eaaq0118.

[51]

H. Jing, H. Yeo, B. Lyu, J. Ryou, S. Choi, J.-H. Park, B. H. Lee, Y.-H. Kim, S. Lee, ACS Nano 2021, 15, 1388.

[52]

Y. Gao, G. Liu, T. Bu, Y. Liu, Y. Qi, Y. Xie, S. Xu, W. Deng, W. Yang, C. Zhang, Nano Res. 2021, 14, 4833.

[53]

Z. Zhang, Q. Yan, Z. Liu, X. Zhao, Z. Wang, J. Sun, Z. L. Wang, R. Wang, L. Li, Nano Energy 2021, 88, 106257.

[54]

D. Wang, D. Zhang, Y. Yang, Q. Mi, J. Zhang, L. Yu, ACS Nano 2021, 15, 2911.

[55]

D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi, L. Yu, Nanomicro Lett. 2021, 13, 57.

[56]

X. Luo, L. Zhu, Y.-C. Wang, J. Li, J. Nie, Z. L. Wang, Adv. Funct. Mater. 2021, 31, 2104928.

[57]

Y. Dong, S. S. K. Mallineni, K. Maleski, H. Behlow, V. N. Mochalin, A. M. Rao, Y. Gogotsi, R. Podila, Nano Energy 2018, 44, 103.

Energy & Environmental Materials
Article number: e12654
Cite this article:
Chen H, Guo S, Zhang S, et al. Improved Flexible Triboelectric Nanogenerator Based on Tile-Nanostructure for Wireless Human Health Monitor. Energy & Environmental Materials, 2024, 7(4): e12654. https://doi.org/10.1002/eem2.12654
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return