PDF (2.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

New Strategy for Boosting Cathodic Performance of Protonic Ceramic Fuel Cells Through Incorporating a Superior Hydronation Second Phase

Chuan Zhou1Xixi Wang1Dongliang Liu1Meijuan Fei1Jie Dai1Daqin Guan1Zhiwei Hu2Linjuan Zhang3Yu Wang3Wei Wang1Ryan O’Hayre4San Ping Jiang5Wei Zhou1,6()Meilin Liu7Zongping Shao5 ()
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, Dresden 01187, Germany
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden CO, USA
WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth WA 6102, Australia
Suzhou Laboratory, Suzhou 215000, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
Show Author Information

Abstract

For protonic ceramic fuel cells, it is key to develop material with high intrinsic activity for oxygen activation and bulk proton conductivity enabling water formation at entire electrode surface. However, a higher water content which benefitting for the increasing proton conductivity will not only dilute the oxygen in the gas, but also suppress the O2 adsorption on the electrode surface. Herein, a new electrode design concept is proposed, that may overcome this dilemma. By introducing a second phase with high-hydrating capability into a conventional cobalt-free perovskite to form a unique nanocomposite electrode, high proton conductivity/concentration can be reached at low water content in atmosphere. In addition, the hydronation creates additional fast proton transport channel along the two-phase interface. As a result, high protonic conductivity is reached, leading to a new breakthrough in performance for proton ceramic fuel cells and electrolysis cells devices among available air electrodes.

Electronic Supplementary Material

Download File(s)
eem-7-4-e12660_ESM.docx (9.7 MB)

References

[1]

E. D. Wachsman, K. T. Lee, Science 2011, 334, 935.

[2]

N. Q. Minh, J. Am. Ceram. Soc. 1993, 76, 563.

[3]

T. Hibino, A. Hashimoto, T. Inoue, J. I. Tokuno, S. I. Yoshida, M. Sano, Science 2000, 288, 2031.

[4]

G. Yang, C. Su, H. Shi, Y. Zhu, W. Zhou, Z. Shao, Energy Fuel 2020, 34, 15169.

[5]

S. Joo, C. Lim, O. Kwon, L. Zhang, J. Zhou, J. Q. Wang, H. Y. Jeong, Y. W. Sin, S. Choi, G. Kim, Mater. Rep. Energy 2021, 1, 100021.

[6]

A. Belotti, J. Liu, A. Curcio, J. Wang, Z. Wang, E. Quattrocchi, M. B. Effat, F. Ciucci, Mater. Rep. Energy 2021, 1, 100018.

[7]

M. Yashima, T. Tsujiguchi, Y. Sakuda, Y. Yasui, Y. Zhou, K. Fujii, S. Torii, T. Kamiyama, S. J. Skinner, Nat. Commun. 2021, 12, 556.

[8]

S. Li, J. T. Irvine, Solid State Ionics 2021, 361, 115571.

[9]

A. Seong, J. Kim, D. Jeong, S. Sengodan, M. Liu, S. Choi, G. Kim, Adv. Sci. 2021, 8, 2004099.

[10]

Y. Xie, N. Shi, D. Huan, W. Tan, J. Zhu, X. Zheng, H. Pan, R. Peng, C. Xia, ChemSusChem 2018, 11, 3423.

[11]

M. Ni, Z. Shao, Science 2020, 369, 138.

[12]

H. Ding, W. Wu, C. Jiang, Y. Ding, W. Bian, B. Hu, P. Singh, C. J. Orme, L. Wang, Y. Zhang, D. Ding, Nat. Commun. 2020, 11, 1907.

[13]

W. Wu, H. Ding, Y. Zhang, Y. Ding, P. Katiyar, P. K. Majumdar, Adv. Sci. 2018, 5, 1800360.

[14]

C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. O’Hayre, Science 2015, 349, 1321.

[15]

C. Duan, R. J. Kee, H. Zhu, C. Karakaya, Y. Chen, S. Ricote, A. Jarry, E. J. Crumlin, D. Hook, R. Braun, N. P. Sullivan, R. O’Hayre, Nat. Commun. 2018, 557, 217.

[16]

Z. Shao, S. M. Haile, Nature 2004, 431, 170.

[17]

L. Chong, J. Wen, J. Kubal, F. G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D. J. Liu, Science 2018, 362, 1276.

[18]

X. Tian, X. Zhao, Y. Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. W. Lou, B. Y. Xia, Science 2019, 366, 850.

[19]

R. Lan, S. Tao, Sci. Adv. 2016, 2, e1600772.

[20]

A. Hauch, R. Küngas, P. Blennow, A. B. Hansen, J. B. Hansen, B. V. Mathiesen, M. B. Mogensen, Science 2020, 370, eaba6118.

[21]

J. F. Shin, W. Xu, M. Zanella, K. Dawson, S. N. Savvin, J. B. Claridge, M. J. Rosseinsky, Nat. Energy 2017, 2, 16214.

[22]

Y. Chen, B. deGlee, Y. Tang, Z. Wang, B. Zhao, Y. Wei, L. Zhang, S. Yoo, K. Pei, J. H. Kim, Y. Ding, P. Hu, F. F. Tao, M. Liu, Nat. Energy 2018, 3, 1042.

[23]

S. Choi, C. J. Kucharczyk, Y. Liang, X. Zhang, I. Takeuchi, H. I. Ji, S. M. Haile, Nat. Energy 2018, 3, 202.

[24]

Y. Wu, B. Zhu, M. Huang, L. Liu, Q. Shi, M. Akbar, C. Chen, J. Wei, J. F. Li, L. R. Zheng, J. S. Kim, H. B. Song, Science 2020, 369, 184.

[25]

J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S. J. Pennycook, J. Santamaria, Science 2008, 321, 676.

[26]

K. Bae, H. S. Noh, D. Y. Jang, J. Hong, H. Kim, K. J. Yoon, J. H. Lee, B. K. Kim, J. H. Shim, J. W. Son, J. Mater. Chem. A 2016, 4, 6395.

[27]

L. Gao, Q. Li, L. Sun, T. Xia, L. Huo, H. Zhao, J. C. Grenier, J. Mater. Chem. A 2018, 6, 15221.

[28]

R. Zohourian, R. Merkle, G. Raimondi, J. Maier, Adv. Funct. Mater. 2018, 28, 1801241.

[29]

G. Yang, C. Su, Y. Chen, F. Dong, M. O. Tade, Z. Shao, J. Eur. Ceram. Soc. 2015, 35, 2531.

[30]

L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, M. Liu, Science 2009, 326, 126.

[31]

I. Yanase, S. Onozawa, Y. Ohashi, T. Takeuchi, Powder Technol. 2019, 348, 43.

[32]

Y. Meng, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, M. Liu, J. Mater. Sci. 2019, 54, 9291.

[33]

C. Zhou, J. Sunarso, Y. Song, J. Dai, J. Zhang, B. Gu, W. Zhou, Z. Shao, J. Mater. Chem. A 2019, 7, 13265.

[34]

H. Wang, X. Wang, B. Meng, X. Tan, K. S. Loh, J. Sunarso, S. Liu, J. Ind. Eng. Chem. 2018, 60, 297.

[35]

X. Wu, Y. Guo, Z. Sun, F. Xie, D. Guan, J. Dai, F. Yu, Z. Hu, Y.-C. Huang, C.-W. Pao, J.-L. Chen, W. Zhou, Z. Shao, Nat. Commun. 2021, 12, 660.

[36]

S. Jiang, Z. Zhang, N. Zhang, Y. Huan, Y. Gong, M. Sun, J. Shi, C. Xie, P. Yang, Q. Fang, H. Li, L. Tong, D. Xie, L. Gu, P. Liu, Y. Zhang, Nano Res. 2018, 11, 1787.

[37]

D. Guan, G. Ryu, Z. Hu, J. Zhou, C. L. Dong, Y. C. Huang, K. Zhang, Y. Zhong, A. C. Komarek, M. Zhou, X. Wu, C. W. Pao, C. T. Chen, W. Zhou, Z. Shao, Nat. Commun. 2020, 11, 3376.

[38]

S. Agrestini, K. Chen, C. Y. Kuo, L. Zhao, H. J. Lin, C. T. Chen, A. Rogalev, P. Ohresser, T. S. Chan, S. C. Weng, A. C. Komarek, K. Yamaura, M. W. Haverkort, Z. Hu, L. H. Tjeng, Phys. Rev. B 2019, 100, 014443.

[39]

G. Chen, Z. Hu, Y. Zhu, Z. G. Chen, Y. Zhong, H. J. Lin, C. T. Chen, L. H. Tjeng, W. Zhou, Z. Shao, J. Mater. Chem. A 2018, 6, 9854.

[40]

S. Song, J. Zhou, X. Su, Y. Wang, J. Li, L. Zhang, G. Xiao, C. Guan, R. Liu, S. Chen, H. J. Lin, S. Zhang, J. Q. Wang, Energy Environ. Sci. 2018, 11, 2945.

[41]

S. Paul, S.-J. Choi, H. J. Kim, Energy Fuel 2020, 34, 10067.

[42]

N. N. Krishnan, N. M. H. Duong, A. Konovalova, J. H. Jang, H. S. Park, H. J. Kim, A. Roznowska, A. Michalak, D. Henkensmeier, J. Mater. Sci. 2020, 614, 118494.

[43]

Y. Zhang, B. Chen, D. Guan, M. Xu, R. Ran, M. Ni, W. Zhou, R. O’Hayre, Z. Shao, Nature 2021, 591, 246.

[44]

J. H. Kim, J. Hong, D.-K. Lim, S. Ahn, J. Kim, J. K. Kim, D. H. Oh, S. H. Jeon, S.-J. Song, W. C. Jung, Energy Environ. Sci. 2022, 15, 1097.

[45]

J. Liu, J. K. Kim, Y. Wang, H. Kim, A. Belotti, B. Koo, Z. Wang, W. C. Jung, F. Ciucci, Energy Environ. Sci. 2022, 15, 4069.

[46]

C. Zhou, X. Shen, D. Liu, J. Cui, Y. Yi, M. Fei, J. Zhou, L. Zhang, R. Ran, M. Xu, W. Zhou, Z. Shao, J. Power Sources 2022, 530, 231321.

[47]

C. Zhou, D. Liu, M. Fei, X. Wang, R. Ran, M. Xu, W. Wang, W. Zhou, R. O’Hayre, Z. Shao, J. Power Sources 2023, 556, 232403.

[48]

X. Wang, W. Li, C. Zhou, M. Xu, Z. Hu, C.-W. Pao, W. Zhou, Z. Shao, ACS Appl. Mater. Interfaces 2023, 15, 1339.

[49]

C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu, L. Bian, D. Jennings, R. O’Hayre, Nat. Energy 2019, 4, 230.

Energy & Environmental Materials
Article number: e12660
Cite this article:
Zhou C, Wang X, Liu D, et al. New Strategy for Boosting Cathodic Performance of Protonic Ceramic Fuel Cells Through Incorporating a Superior Hydronation Second Phase. Energy & Environmental Materials, 2024, 7(4): e12660. https://doi.org/10.1002/eem2.12660
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return