PDF (2.6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

How Does Stacking Pressure Affect the Performance of Solid Electrolytes and All-Solid-State Lithium Metal Batteries?

Junwu SangBin TangYong QiuYongzheng FangKecheng Pan ()Zhen Zhou()
Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Abstract

All-solid-state lithium metal batteries (ASSLMBs) with solid electrolytes (SEs) have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety. However, since ASSLMBs lack the wetting properties of liquid electrolytes, they require stacking pressure to prevent contact loss between electrodes and SEs. Though previous studies showed that stacking pressure could impact certain performance aspects, a comprehensive investigation into the effects of stacking pressure has not been conducted. To address this gap, we utilized the Li6PS5Cl solid electrolyte as a reference and investigated the effects of stacking pressures on the performance of SEs and ASSLMBs. We also developed models to explain the underlying origin of these effects and predict battery performance, such as ionic conductivity and critical current density. Our results demonstrated that an appropriate stacking pressure is necessary to achieve optimal performance, and each step of applying pressure requires a specific pressure value. These findings can help explain discrepancies in the literature and provide guidance to establish standardized testing conditions and reporting benchmarks for ASSLMBs. Overall, this study contributes to the understanding of the impact of stacking pressure on the performance of ASSLMBs and highlights the importance of careful pressure optimization for optimal battery performance.

Electronic Supplementary Material

Download File(s)
eem-7-4-e12670_ESM.docx (2.6 MB)

References

[1]

S. Randau, D. A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W. G. Zeier, Nat. Energy 2020, 5, 259.

[2]

L. Z. Fan, H. He, C. W. Nan, Nat. Rev. Mater. 2021, 6, 1003.

[3]

A. M. Abakumov, S. S. Fedotov, E. V. Antipov, J. M. Tarascon, Nat. Commun. 2020, 11, 4976.

[4]

X. Zhang, Y. Yang, Z. Zhou, Chem. Soc. Rev. 2020, 49, 3040.

[5]

K. J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J. L. Rupp, Adv. Energy Mater. 2021, 11, 2002689.

[6]

C. Wang, J. Liang, Y. Zhao, M. Zheng, X. Li, X. Sun, Energy Environ. Sci. 2021, 14, 2577.

[7]

K. Pan, L. Zhang, W. Qian, X. Wu, K. Dong, H. Zhang, S. Zhang, Adv. Mater. 2020, 32, 2000399.

[8]

J. Sang, B. Tang, K. Pan, Y.-B. He, Z. Zhou, Acc. Mater. Res. 2023, 4, 472.

[9]

J. M. Doux, Y. Yang, D. H. Tan, H. Nguyen, E. A. Wu, X. Wang, A. Banerjee, Y. S. Meng, J. Mater. Chem. A 2020, 8, 5049.

[10]

C. Hänsel, D. Kundu, Adv. Mater. Interfaces 2021, 8, 2100206.

[11]

F. Zhang, Y. Guo, L. Zhang, P. Jia, X. Liu, P. Qiu, H. Zhang, J. Huang, eTransportation 2023, 15, 100220.

[12]

Z. Ning, G. Li, D. L. R. Melvin, Y. Chen, J. Bu, D. Spencer-Jolly, J. Liu, B. Hu, X. Gao, J. Perera, C. Gong, S. D. Pu, S. Zhang, B. Liu, G. O. Hartley, A. J. Bodey, R. I. Todd, P. S. Grant, D. E. J. Armstrong, T. J. Marrow, C. W. Monroe, P. G. Bruce, Nature 2023, 618, 287.

[13]

J. Lee, T. Lee, K. Char, K. J. Kim, J. W. Choi, Acc. Chem. Res. 2021, 54, 3390.

[14]

D. Zeng, J. Yao, L. Zhang, R. Xu, S. Wang, X. Yan, C. Yu, L. Wang, Nat. Commun. 1909, 2022, 13.

[15]

S. Y. Ham, H. Yang, O. Nunez-cuacuas, D. H. Tan, Y. T. Chen, G. Deysher, A. Cronk, P. Ridley, J.-M. Doux, E. A. Wu, Energy Storage Mater. 2023, 55, 455.

[16]

J. Kasemchainan, S. Zekoll, D. Spencer Jolly, Z. Ning, G. O. Hartley, J. Marrow, P. G. Bruce, Nat. Mater. 2019, 18, 1105.

[17]

C. Lee, S. Y. Han, J. A. Lewis, P. P. Shetty, D. Yeh, Y. Liu, E. Klein, H. W. Lee, M. T. McDowell, ACS Energy Lett. 2021, 6, 3261.

[18]

F. Zhao, Q. Sun, C. Yu, S. Zhang, K. Adair, S. Wang, Y. Liu, Y. Zhao, J. Liang, C. Wang, ACS Energy Lett. 2020, 5, 1035.

[19]

Y. Lu, C. Z. Zhao, H. Yuan, X. B. Cheng, J. Q. Huang, Q. Zhang, Adv. Funct. Mater. 2021, 31, 2009925.

[20]

J. M. Doux, H. Nguyen, D. H. Tan, A. Banerjee, X. Wang, E. A. Wu, C. Jo, H. Yang, Y. S. Meng, Adv. Energy Mater. 2020, 10, 1903253.

Energy & Environmental Materials
Article number: e12670
Cite this article:
Sang J, Tang B, Qiu Y, et al. How Does Stacking Pressure Affect the Performance of Solid Electrolytes and All-Solid-State Lithium Metal Batteries?. Energy & Environmental Materials, 2024, 7(4): e12670. https://doi.org/10.1002/eem2.12670
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return