PDF (5.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

High-Quality van der Waals Epitaxial CsPbBr3 Film Grown on Monolayer Graphene Covered TiO2 for High-Performance Solar Cells

Zhaorui Wen1Chao Liang2Shengwen Li1Gang Wang1Bingchen He1Hao Gu1Junpeng Xie1Hui Pan1Zhenhuang Su3Xingyu Gao3Guo Hong4()Shi Chen1 ()
Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China
MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, Hong Kong 999077, China
Show Author Information

Abstract

Two-dimensional materials have been widely used to tune the growth and energy-level alignment of perovskites. However, their incomplete passivation and chaotic usage amounts are not conducive to the preparation of high-quality perovskite films. Herein, we succeeded in obtaining higher-quality CsPbBr3 films by introducing large-area monolayer graphene as a stable physical overlay on top of TiO2 substrates. Benefiting from the inert and atomic smooth graphene surface, the CsPbBr3 film grown on top by the van der Waal epitaxy has higher crystallinity, improved (100) orientation, and an average domain size of up to 1.22 μm. Meanwhile, a strong downward band bending is observed at the graphene/perovskite interface, improving the electron extraction to the electron transport layers (ETL). As a result, perovskite film grown on graphene has lower photoluminescence (PL) intensity, shorter carrier lifetime, and fewer defects. Finally, a photovoltaic device based on epitaxy CsPbBr3 film is fabricated, exhibiting power conversion efficiency (PCE) of up to 10.64% and stability over 2000 h in the air.

Electronic Supplementary Material

Download File(s)
eem-7-4-e12680_ESM.docx (4.6 MB)

References

[1]

C. Liu, Y.-B. Cheng, Z. Ge, Chem. Soc. Rev. 2020, 49, 1653.

[2]

L. Chouhan, S. Ghimire, C. Subrahmanyam, T. Miyasaka, V. Biju, Chem. Soc. Rev. 2020, 49, 2869.

[3]

C. Liang, H. Gu, J. Xia, T. Liu, S. Mei, N. Zhang, Y. Chen, G. Xing, Carbon Energy 2023, 5, e251.

[4]

J. Zeng, L. Bi, Y. Cheng, B. Xu, A. K. Y. Jen, Nano Res. Energy 2022, 1, e9120004.

[5]

B. Li, Z. Li, X. Wu, Z. Zhu, Nano Res. Energy 2022, 1, e9120011.

[6]

L. Q. Wang, L. Wen, Y. Y. Tong, S. H. Wang, X. G. Hou, X. D. An, S. X. Dou, J. Liang, Carbon Energy 2021, 3, 225.

[7]

R. He, X. Z. Huang, M. Chee, F. Hao, P. Dong, Carbon Energy 2019, 1, 109.

[8]

A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.

[9]

H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. Il Seok, Nature 2021, 598, 444.

[10]

W. Xiang, W. Tress, Adv. Mater. 2019, 31, 1902851.

[11]

K. Domanski, B. Roose, T. Matsui, M. Saliba, S.-H. Turren-Cruz, J.-P. Correa-Baena, C. R. Carmona, G. Richardson, J. M. Foster, F. De Angelis, J. M. Ball, A. Petrozza, N. Mine, M. K. Nazeeruddin, W. Tress, M. Grätzel, U. Steiner, A. Hagfeldt, A. Abate, Energy Environ. Sci. 2017, 10, 604.

[12]

J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, J. Am. Chem. Soc. 2016, 138, 15829.

[13]

J. Chen, W. C. H. Choy, Sol. RRL 2020, 4, 2000408.

[14]

W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510.

[15]

C. Liang, G. Xing, Energy Environ. Mater. 2021, 4, 500.

[16]

R. Guo, J. Xia, H. Gu, X. Chu, Y. Zhao, X. Meng, Z. Wu, J. Li, Y. Duan, Z. Li, Z. Wen, S. Chen, Y. Cai, C. Liang, Y. Shen, G. Xing, W. Zhang, G. Shao, J. Mater. Chem. A 2023, 11, 408.

[17]

C. Zhen, T. Wu, R. Chen, L. Wang, G. Liu, H.-M. Cheng, ACS Sustain. Chem. Eng. 2019, 7, 4586.

[18]

Z. Dai, S. K. Yadavalli, M. Chen, A. Abbaspourtamijani, Y. Qi, N. P. Padture, Science 2021, 372, 618.

[19]

R. C. Shallcross, S. Olthof, K. Meerholz, N. R. Armstrong, ACS Appl. Mater. Interfaces 2019, 11, 32500.

[20]

C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 2015, 6, 7747.

[21]

H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. d. Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E. H. Sargent, Science 2017, 355, 722.

[22]

Z. Li, L. Wang, R. Liu, Y. Fan, H. Meng, Z. Shao, G. Cui, S. Pang, Adv. Energy Mater. 2019, 9, 1902142.

[23]

D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya, S. Liu, Nat. Commun. 2018, 9, 3239.

[24]

Z. Liu, L. Qiu, L. K. Ono, S. He, Z. Hu, M. Jiang, G. Tong, Z. Wu, Y. Jiang, D.-Y. Son, Y. Dang, S. Kazaoui, Y. Qi, Nat. Energy 2020, 5, 596.

[25]

K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R. H. Friend, A. K. Y. Jen, H. J. Snaith, ACS Nano 2014, 8, 12701.

[26]

M. Valles-Pelarda, B. C. Hames, I. García-Benito, O. Almora, A. Molina-Ontoria, R. S. Sánchez, G. Garcia-Belmonte, N. Martín, I. Mora-Sero, J. Phys. Chem. Lett. 2016, 7, 4622.

[27]

Q. Dong, C. Zhu, M. Chen, C. Jiang, J. Guo, Y. Feng, Z. Dai, S. K. Yadavalli, M. Hu, X. Cao, Y. Li, Y. Huang, Z. Liu, Y. Shi, L. Wang, N. P. Padture, Y. Zhou, Nat. Commun. 2021, 12, 973.

[28]

B. Chen, H. Chen, Y. Hou, J. Xu, S. Teale, K. Bertens, H. Chen, A. Proppe, Q. Zhou, D. Yu, K. Xu, M. Vafaie, Y. Liu, Y. Dong, E. H. Jung, C. Zheng, T. Zhu, Z. Ning, E. H. Sargent, Adv. Mater. 2021, 33, 2103394.

[29]

C.-C. Zhang, S. Yuan, Y.-H. Lou, Q.-W. Liu, M. Li, H. Okada, Z.-K. Wang, Adv. Mater. 2020, 32, 2001479.

[30]

M. Zhang, M. Ye, W. Wang, C. Ma, S. Wang, Q. Liu, T. Lian, J. Huang, Z. Lin, Adv. Mater. 2020, 32, 2000999.

[31]

X. Chen, W. Xu, N. Ding, Y. Ji, G. Pan, J. Zhu, D. Zhou, Y. Wu, C. Chen, H. Song, Adv. Funct. Mater. 2020, 30, 2003295.

[32]

J. Dou, C. Zhu, H. Wang, Y. Han, S. Ma, X. Niu, N. Li, C. Shi, Z. Qiu, H. Zhou, Y. Bai, Q. Chen, Adv. Mater. 2021, 33, 2102947.

[33]

T. J. Macdonald, A. J. Clancy, W. Xu, Z. Jiang, C.-T. Lin, L. Mohan, T. Du, D. D. Tune, L. Lanzetta, G. Min, T. Webb, A. Ashoka, R. Pandya, V. Tileli, M. A. McLachlan, J. R. Durrant, S. A. Haque, C. A. Howard, J. Am. Chem. Soc. 2021, 143, 21549.

[34]

A. Agresti, A. Pazniak, S. Pescetelli, A. Di Vito, D. Rossi, A. Pecchia, M. Auf der Maur, A. Liedl, R. Larciprete, D. V. Kuznetsov, D. Saranin, A. Di Carlo, Nat. Mater. 2019, 18, 1228.

[35]

G. Tang, P. You, Q. Tai, A. Yang, J. Cao, F. Zheng, Z. Zhou, J. Zhao, P. K. L. Chan, F. Yan, Adv. Mater. 2019, 31, 1807689.

[36]

E. Zhao, L. Gao, S. Yang, L. Wang, J. Cao, T. Ma, Nano Res. 2018, 11, 5913.

[37]

W. Chen, K. Li, Y. Wang, X. Feng, Z. Liao, Q. Su, X. Lin, Z. He, J. Phys. Chem. Lett. 2017, 8, 591.

[38]

L. L. Jiang, Z. K. Wang, M. Li, C. C. Zhang, Q. Q. Ye, K. H. Hu, D. Z. Lu, P. F. Fang, L. S. Liao, Adv. Funct. Mater. 2018, 28, 1705875.

[39]

C.-C. Chung, S. Narra, E. Jokar, H.-P. Wu, E. W.-G. Diau, J. Mater. Chem. A 2017, 5, 13957.

[40]

Q. Zhou, J. Duan, J. Du, Q. Guo, Q. Zhang, X. Yang, Y. Duan, Q. Tang, Adv. Sci. 2021, 8, 2101418.

[41]

B. Wang, J. Iocozzia, M. Zhang, M. Ye, S. Yan, H. Jin, S. Wang, Z. Zou, Z. Lin, Chem. Soc. Rev. 2019, 48, 4854.

[42]

L. Fagiolari, F. Bella, Energy Environ. Sci. 2019, 12, 3437.

[43]

X. Lin, H. Su, S. He, Y. Song, Y. Wang, Z. Qin, Y. Wu, X. Yang, Q. Han, J. Fang, Y. Zhang, H. Segawa, M. Grätzel, L. Han, Nat. Energy 2022, 7, 520.

[44]

M. P. Hautzinger, E. K. Raulerson, S. P. Harvey, T. Liu, D. Duke, X. Qin, R. A. Scheidt, B. M. Wieliczka, A. J. Phillips, K. R. Graham, V. Blum, J. M. Luther, M. C. Beard, J. L. Blackburn, J. Am. Chem. Soc. 2023, 145, 2052.

[45]

J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn, H. S. Jung, M. Choi, Energy Environ. Sci. 2017, 10, 337.

[46]

S. Wang, X. Huang, H. Sun, C. Wu, Nanoscale Res. Lett. 2017, 12, 619.

[47]

T. H. Chowdhury, M. Akhtaruzzaman, M. E. Kayesh, R. Kaneko, T. Noda, J.-J. Lee, A. Islam, Sol. Energy 2018, 171, 652.

[48]

H. Yang, N. Liu, M. Ran, Z. He, R. Meng, M. Chen, H. Lu, Y. Yang, J. Mater. Sci. Mater. Electron. 2020, 31, 3603.

[49]

E. Nouri, M. R. Mohammadi, Z.-X. Xu, V. Dracopoulos, P. Lianos, Phys. Chem. Chem. Phys. 2018, 20, 2388.

[50]

H.-S. Kim, B. Yang, M. M. Stylianakis, E. Kymakis, S. M. Zakeeruddin, M. Grätzel, A. Hagfeldt, Cell Rep. Phys. Sci. 2020, 1, 100053.

[51]

A. Agresti, S. Pescetelli, B. Taheri, A. E. Del Rio Castillo, L. Cinà, F. Bonaccorso, A. Di Carlo, ChemSusChem 2016, 9, 2609.

[52]

M. Dadashbeik, D. Fathi, M. Eskandari, Sol. Energy 2020, 207, 917.

[53]

F. Biccari, F. Gabelloni, E. Burzi, M. Gurioli, S. Pescetelli, A. Agresti, A. E. Del Rio Castillo, A. Ansaldo, E. Kymakis, F. Bonaccorso, A. Di Carlo, A. Vinattieri, Adv. Energy Mater. 2017, 7, 1701349.

[54]

L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Phys. Rep. 2009, 473, 51.

[55]

Z. Li, L. Kong, S. Huang, L. Li, Angew. Chem. 2017, 129, 8246.

[56]

C. Ma, M. Grätzel, N.-G. Park, ACS Energy Lett. 2022, 7, 3120.

[57]

K. Huang, L. Yuan, S. Feng, Inorg. Chem. Front. 2015, 2, 965.

[58]

J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang, S.-J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, Nat. Commun. 2018, DOI: 10.1038/s41467-018-05454-4

[59]

X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, Nat. Energy 2020, 5, 131.

[60]

Q. An, F. Paulus, D. Becker-Koch, C. Cho, Q. Sun, A. Weu, S. Bitton, N. Tessler, Y. Vaynzof, Matter 2021, 4, 1683.

[61]

Y. Kim, S. S. Cruz, K. Lee, B. O. Alawode, C. Choi, Y. Song, J. M. Johnson, C. Heidelberger, W. Kong, S. Choi, K. Qiao, I. Almansouri, E. A. Fitzgerald, J. Kong, A. M. Kolpak, J. Hwang, J. Kim, Nature 2017, 544, 340.

[62]

W. Kong, H. Li, K. Qiao, Y. Kim, K. Lee, Y. Nie, D. Lee, T. Osadchy, R. J. Molnar, D. K. Gaskill, Nat. Mater. 2018, 17, 999.

[63]

E. M. Miller, Y. Zhao, C. C. Mercado, S. K. Saha, J. M. Luther, K. Zhu, V. Stevanović, C. L. Perkins, J. van de Lagemaat, Phys. Chem. Chem. Phys. 2014, 16, 22122.

[64]

R. Garg, N. K. Dutta, N. R. Choudhury, Nanomaterials 2014, 4, 267.

[65]

J. Chen, C. Zhang, X. Liu, L. Peng, J. Lin, X. Chen, Photonics Res. 2021, 9, 151.

Energy & Environmental Materials
Article number: e12680
Cite this article:
Wen Z, Liang C, Li S, et al. High-Quality van der Waals Epitaxial CsPbBr3 Film Grown on Monolayer Graphene Covered TiO2 for High-Performance Solar Cells. Energy & Environmental Materials, 2024, 7(4): e12680. https://doi.org/10.1002/eem2.12680
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return