AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Mo Doping and Electrochemical Activation Co-Induced Vanadium Composite as High-Rate and Long-Life Anode for Ca-Ion Batteries

Hongchen Pan1,2Chunfang Wang2,3Minling Qiu2Yaxin Wang1,2Cuiping Han4 ( )Ding Nan1 ( )
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
Songshan Lake Materials Laboratory, Dongguan, 523808, China
The State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
Show Author Information

Abstract

Calcium-ion batteries have been considered attractive candidates for large-scale energy storage applications due to their natural abundance and low redox potential of Ca2+/Ca. However, current calcium ion technology is still hampered by the lack of high-capacity and long-life electrode materials to accommodate the large Ca2+ (1.00 Å). Herein, an amorphous vanadium structure induced by Mo doping and in-situ electrochemical activation is reported as a high-rate anode material for calcium ion batteries. The doping of Mo could destroy the lattice stability of VS4 material, enhancing the flexibility of the structure. The following electrochemical activation further converted the material into sulfide and oxides co-dominated composite (defined as MoVSO), which serves as an active material for the storage of Ca2+ during cycling. Consequently, this amorphous vanadium structure exhibits excellent rate capability, achieving discharge capacities of 306.7 and 149.2 mAh g−1 at 5 and 50 A g−1 and an ultra-long cycle life of 2000 cycles with 91.2% capacity retention. These values represent the highest level to date reported for calcium ion batteries. The mechanism studies show that the material undergoes a partial phase transition process to derive MoVSO. This work unveiled the calcium storage mechanism of vanadium sulfide in aqueous electrolytes and accelerated the development of high-performance aqueous calcium ion batteries.

Electronic Supplementary Material

Download File(s)
eem-7-5-e12690_ESM.docx (3.6 MB)

References

[1]

C. Zuo, F. Xiong, J. Wang, Y. An, L. Zhang, Q. An, Adv. Funct. Mater. 2022, 32, 2202975.

[2]

M. E. Arroyo-de Dompablo, A. Ponrouch, P. Johansson, M. R. Palacin, Chem. Rev. 2016, 120, 6332.

[3]

J. Li, C. Han, X. Ou, Y. Tang, Angew. Chem. Int. Ed. 2022, 61, e202116668.

[4]

J. Wang, J. Wang, Y. Jiang, F. Xiong, S. Tan, F. Qiao, J. Chen, Q. An, L. Mai, Adv. Funct. Mater. 2022, 32, 2113030.

[5]

D. Chen, M. Lu, B. Wang, R. Chai, L. Li, D. Cai, H. Yang, B. Liu, Y. Zhang, W. Han, Energy Storage Mater. 2021, 35, 679.

[6]

B. Ji, H. He, W. Yao, Y. Tang, Adv. Mater. 2021, 33, 2005501.

[7]

R. J. Gummow, G. Vamvounis, M. B. Kannan, Y. He, Adv. Mater. 2018, 30, 1801702.

[8]

X. Tang, D. Zhou, B. Zhang, S. Wang, P. Li, H. Liu, X. Guo, P. Jaumaux, X. Gao, Y. Fu, C. Wang, C. Wang, G. Wang, Nat. Commun. 2021, 12, 2857.

[9]

K. V. Nielson, T. L. Liu, Angew. Chem. Int. Ed. 2020, 59, 3368.

[10]

C. Chen, F. Shi, Z.-L. Xu, J. Mater. Chem. A 2021, 9, 11909.

[11]

S. Kim, L. Yin, M. H. Lee, P. Parajuli, L. Blanc, T. T. Fister, H. Park, B. J. Kwon, B. J. Ingram, P. Zapol, R. F. Klie, K. Kang, L. F. Nazar, S. H. Lapidus, J. T. Vaughey, ACS Energy Lett. 2020, 5, 3206.

[12]

H. Song, C. Wang, Adv. Energy Sustain. Res. 2022, 3, 2100192.

[13]

P. Wang, H. Wang, Z. Chen, J. Wu, J. Luo, Y. Huang, Nano Res. 2022, 15, 701.

[14]

B. J. Kwon, L. Yin, C. J. Bartel, K. Kumar, P. Parajuli, J. Gim, S. Kim, Y. A. Wu, R. F. Klie, S. H. Lapidus, B. Key, G. Ceder, J. Cabana, Chem. Mater. 2022, 34, 836.

[15]

Z. L. Xu, J. Park, J. Wang, H. Moon, G. Yoon, J. Lim, Y. J. Ko, S. P. Cho, S. Y. Lee, K. Kang, Nat. Commun. 2021, 12, 3369.

[16]

Z. Zhao-Karger, Y. Xiu, Z. Li, A. Reupert, T. Smok, M. Fichtner, Nat. Commun. 2022, 13, 3849.

[17]

S. Zhang, Y. Zhu, D. Wang, C. Li, Y. Han, Z. Shi, S. Feng, Adv. Sci. 2022, 9, 2200397.

[18]

H. Song, Y. Li, F. Tian, C. Wang, Adv. Funct. Mater. 2022, 32, 2200004.

[19]

C. Han, H. Li, Y. Li, J. Zhu, C. Zhi, Nat. Commun. 2021, 12, 2400.

[20]

Z. Hou, R. Zhou, Y. Yao, Z. Min, Z. Lu, Y. Zhu, J. M. Tarascon, B. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202214796.

[21]

Z. Hou, R. Zhou, Z. Min, Z. Lu, B. Zhang, ACS Energy Lett. 2023, 8, 274.

[22]

J. Park, Z. L. Xu, G. Yoon, S. K. Park, J. Wang, H. Hyun, H. Park, J. Lim, Y. J. Ko, Y. S. Yun, K. Kang, Adv. Mater. 2020, 32, 1904411.

[23]

X. Zhang, Z. Zhang, Z. Zhou, J. Energy Chem. 2018, 27, 83.

[24]

S. Gheytani, Y. Liang, F. Wu, Y. Jing, H. Dong, K. K. Rao, X. Chi, F. Fang, Y. Yao, Adv. Sci. 2017, 4, 1700465.

[25]

R. Cang, C. Zhao, K. Ye, J. Yin, K. Zhu, J. Yan, G. Wang, D. Cao, ChemSusChem 2020, 13, 3911.

[26]

Z. Yao, V. I. Hegde, A. Aspuru-Guzik, C. Wolverton, Adv. Energy Mater. 2019, 9, 1802994.

[27]

M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H. M. Cheng, Nat. Chem. 2018, 10, 667.

[28]

Y. Kim, Y. Park, M. Kim, J. Lee, K. J. Kim, J. W. Choi, Nat. Commun. 2022, 13, 2371.

[29]

X. Xu, F. Xiong, J. Meng, X. Wang, C. Niu, Q. An, L. Mai, Adv. Funct. Mater. 2020, 30, 1904398.

[30]

X. Wang, X. Zhang, G. Zhao, H. Hong, Z. Tang, X. Xu, H. Li, C. Zhi, C. Han, ACS Nano 2022, 16, 6093.

[31]

Y. Liu, L. Xu, X. Guo, T. Lv, H. Pang, J. Mater. Chem. A 2020, 8, 20784.

[32]

Z. Li, B. P. Vinayan, P. Jankowski, C. Njel, A. Roy, T. Vegge, J. Maibach, J. M. G. Lastra, M. Fichtner, Z. Zhao-Karger, Angew. Chem. Int. Ed. 2020, 132, 11580.

[33]

X. Xue, R. Chen, C. Yan, P. Zhao, Y. Hu, W. Kong, H. Lin, L. Wang, Z. Jin, Adv. Energy Mater. 2019, 9, 1900145.

[34]

J. Zhao, D. Xiao, Q. Wan, X. Wei, G. Tao, Y. Liu, Y. Xiang, K. Davey, Z. Liu, Z. Guo, Y. Song, Small 2023, 19, 2301738.

[35]

C. S. Rout, B. H. Kim, X. Xu, J. Yang, H. Y. Jeong, D. Odkhuu, N. Park, J. Cho, H. S. Shin, J. Am. Chem. Soc. 2013, 135, 8724.

[36]

J. Liu, W. Peng, Y. Li, F. Zhang, X. Fan, J. Mater. Chem. C 2021, 9, 6312.

[37]

X. Xue, R. Chen, C. Yan, P. Zhao, Y. Hu, W. Kong, H. Lin, L. Wang, Z. Jin, J. Mater. Chem. A 2018, 6, 23761.

[38]

L. Yu, S. Zhao, Y. Yuan, G. Wei, J. Zhao, J. Mater. Chem. A 2021, 9, 1107.

[39]

Y. Wang, Z. Liu, C. Wang, X. Yi, R. Chen, L. Ma, Y. Hu, G. Zhu, T. Chen, Z. Tie, J. Ma, J. Liu, Z. Jin, Adv. Mater. 2018, 30, 1802563.

[40]

L. Cao, B. Luo, B. Xu, J. Zhang, C. Wang, Z. Xiao, S. Li, Y. Li, B. Zhang, G. Zou, H. Hou, X. Ou, X. Ji, Adv. Funct. Mater. 2021, 31, 2103802.

[41]

Z. Feng, G. Li, X. Wang, C. J. Gómez-García, J. Xin, H. Ma, H. Pang, K. Gao, Chem. Eng. J. 2022, 445, 136797.

[42]

S. Cheng, K. Yao, K. Zheng, Q. Li, D. Chen, Y. Jiang, W. Liu, Y. Feng, X. Rui, Y. Yu, Energy Environ. Mater. 2022, 5, 594.

[43]

J. Zhou, L. Wang, M. Yang, J. Wu, F. Chen, W. Huang, N. Han, H. Ye, F. Zhao, Y. Li, Y. Li, Adv. Mater. 2017, 29, 1702061.

[44]

R. Zhou, Z. Hou, Q. Liu, X. Du, J. Huang, B. Zhang, Adv. Funct. Mater. 2022, 32, 2200929.

[45]

Y. Tang, X. Li, H. Lv, D. Xie, W. Wang, C. Zhi, H. Li, Adv. Energy Mater. 2020, 10, 2000892.

[46]

S. Gao, P. Ju, Z. Liu, L. Zhai, W. Liu, X. Zhang, Y. Zhou, C. Dong, F. Jiang, J. Sun, J. Energy Chem. 2022, 69, 356.

[47]

L. Xing, K. A. Owusu, X. Liu, J. Meng, K. Wang, Q. An, L. Mai, Nano Energy 2021, 79, 105384.

[48]

P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Adv. Energy Mater. 2017, 7, 1601920.

[49]

D. Zhou, X. Tang, X. Zhang, F. Zhang, J. Wu, F. Kang, B. Li, G. Wang, Nano Lett. 2021, 21, 3551.

Energy & Environmental Materials
Article number: e12690
Cite this article:
Pan H, Wang C, Qiu M, et al. Mo Doping and Electrochemical Activation Co-Induced Vanadium Composite as High-Rate and Long-Life Anode for Ca-Ion Batteries. Energy & Environmental Materials, 2024, 7(5): e12690. https://doi.org/10.1002/eem2.12690

32

Views

0

Downloads

1

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 06 April 2023
Revised: 12 July 2023
Published: 25 October 2023
© 2024 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return