PDF (2.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Investigation of Power Density Amplification in Stacked Triboelectric Nanogenerators

Fan Shen1Qin Zhang1Hengyu Guo2Chen Cao1Ying Gong3Junlei Wang4 ()Yan Peng3,5()Zhongjie Li1,3()
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
Department of Applied Physics, Chongqing University, Chongqing 400044, China
Institute of Artificial Intelligence, School of Future Technology, Shanghai University, Shanghai 200444, China
School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450000, China
Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
Show Author Information

Abstract

In engineering practice, the output performance of contact separation TENGs (CS-TENGs) increases with the increase of tribo-pair area, which includes increasing the size of single layer CS-TENGs (SCS-TENGs) or the number of units (zigzag TENGs). However, such two strategies show significant differences in output power and power density. In this study, to seek a universal CS-TENG design solution, the output performance of a SCS-TENG and a zigzag TENG (Z-TENG) is systematically compared, including voltage, current, transferred charge, instantaneous power density, and charging power density. The relationship between contact area and output voltages is explored, and the output voltage equation is fitted. The experimental results reveal that SCS-TENGs yield better performance than Z-TENGs in terms of voltage, power, and power density under the same total contact area. Z-TENGs show energy loss during the transfer of mechanical energy, and such loss is aggravated by the increasing number of units. The instantaneous peak power of the SCS-TENG is up to 22 times that of the Z-TENG (45 cm2). Furthermore, the power density of capacitor charging of SCS-TENGs is 131% of that of Z-TENGs, which are relatively close. Z-TENG is a feasible alternative when the working space is limited.

References

[1]

S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, Z. L. Wang, Energy Environ. Sci. 2013, 6, 3576.

[2]

L. Xu, Y. Pang, C. Zhang, T. Jiang, X. Chen, J. Luo, W. Tang, X. Cao, Z. L. Wang, Nano Energy 2017, 31, 351.

[3]

Q. Shi, Z. Zhang, T. He, Z. Sun, B. Wang, Y. Feng, X. Shan, B. Salam, C. Lee, Nat. Commun. 2020, 11, 4609.

[4]

T. X. Xiao, X. Liang, T. Jiang, L. Xu, J. J. Shao, J. H. Nie, Y. Bai, W. Zhong, Z. L. Wang, Adv. Funct. Mater. 2018, 28, 1802634.

[5]

R. Lei, H. Zhai, J. Nie, W. Zhong, Y. Bai, X. Liang, L. Xu, T. Jiang, X. Chen, Z. L. Wang, Adv. Mater. Technol. 2019, 4, 1800514.

[6]

C. Zhang, Z. Zhao, O. Yang, W. Yuan, L. Zhou, X. Yin, L. Liu, Y. Li, Z. L. Wang, J. Wang, Adv. Mater. Technol. 2020, 5, 2000531.

[7]

P. Yin, K. C. Aw, X. Jiang, C. Xin, H. Guo, L. Tang, Y. Peng, Z. Li, Nano Energy 2022, 95, 106976.

[8]

H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. C. Wang, C. Xu, Z. L. Wang, Nat. Commun. 2019, 10, 1427.

[9]

M. Sun, Q. Lu, Z. L. Wang, B. Huang, Nat. Commun. 2021, 12, 1752.

[10]

C. Xu, Y. Zi, A. C. Wang, H. Zou, Y. Dai, X. He, P. Wang, Y.-C. Wang, P. Feng, D. Li, Z. L. Wang, Adv. Mater. 2018, 30, 1706790.

[11]

C. Zhang, L. Zhou, P. Cheng, X. Yin, D. Liu, X. Li, H. Guo, Z. L. Wang, J. Wang, Appl. Mater. Today 2020, 18, 100496.

[12]

W. Li, L. Wan, Y. Lin, G. Liu, H. Qu, H. Wen, J. Ding, H. Ning, H. Yao, Nano Energy 2022, 95, 106994.

[13]

D. Guan, G. Xu, X. Xia, J. Wang, Y. Zi, ACS Appl. Mater. Interfaces 2021, 13, 6331.

[14]

W. Sun, Z. Jiang, X. Xu, Q. Han, F. Chu, Int. J. Non-Linear Mech. 2021, 136, 103773.

[15]

W. Liu, J. Shi, Nano Energy 2021, 89, 106479.

[16]

C. Wu, R. Liu, J. Wang, Y. Zi, L. Lin, Z. L. Wang, Nano Energy 2017, 32, 287.

[17]

T. Jiang, Y. Yao, L. Xu, L. Zhang, T. Xiao, Z. L. Wang, Nano Energy 2017, 31, 560.

[18]

Z. Li, X. Peng, G. Hu, Y. Peng, Int. J. Mech. Sci. 2022, 223, 107299.

[19]

Q. Zhang, Z. Liu, X. Jiang, Y. Peng, C. Zhu, Z. Li, Sustain. Energy Technol. Assess. 2022, 53, 102591.

[20]

W. Zhong, L. Xu, X. Yang, W. Tang, J. Shao, B. Chen, Z. L. Wang, Nanoscale 2019, 11, 7199.

[21]

X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang, Z. L. Wang, Energy Environ. Sci. 2020, 13, 277.

[22]

Z. Ren, X. Liang, D. Liu, X. Li, J. Ping, Z. Wang, Z. L. Wang, Adv. Energy Mater. 2021, 11, 2101116.

[23]

Q. Zhang, C. Xin, F. Shen, Y. Gong, Y. Zi, H. Guo, Z. Li, Y. Peng, Q. Zhang, Z. L. Wang, Energy Environ. Sci. 2022, 15, 3688.

[24]

L. M. Zhang, C. B. Han, T. Jiang, T. Zhou, X. H. Li, C. Zhang, Z. L. Wang, Nano Energy 2016, 22, 87.

[25]

H. Li, C. Liang, H. Ning, J. Liu, C. Zheng, J. Li, H. Yao, Y. Peng, L. Wan, G. Liu, Nano Energy 2022, 103, 107812.

[26]

Y. Sun, F. Zheng, X. Wei, Y. Shi, R. Li, B. Wang, L. Wang, Z. Wu, Z. L. Wang, ACS Appl. Mater. Interfaces 2022, 14, 15187.

[27]

G. Jian, Q. Meng, N. Yang, L. Feng, F. Wang, Y. Chen, C.-P. Wong, Nano Energy 2022, 102, 107637.

[28]

H. Yang, M. Deng, Q. Zeng, X. Zhang, J. Hu, Q. Tang, H. Yang, C. Hu, Y. Xi, Z. L. Wang, ACS Nano 2020, 14, 3328.

[29]

H. Wang, C. Zhu, W. Wang, R. Xu, P. Chen, T. Du, T. Xue, Z. Wang, M. Xu, Nano 2022, 12, 594.

[30]

X. Liang, Z. Liu, Y. Feng, J. Han, L. Li, J. An, P. Chen, T. Jiang, Z. L. Wang, Nano Energy 2021, 83, 105836.

[31]

Z. Cao, Z. Yuan, C. Han, J. Feng, B. Wang, Z. L. Wang, Z. Wu, ACS Appl. Nano Mater. 2022, 5, 11577.

[32]

Z. L. Wang, Mater. Today 2022, 52, 348.

[33]

Z. L. Wang, Rep. Prog. Phys. 2021, 84, 96502.

[34]

D. J. Lacks, T. Shinbrot, Nat. Rev. Chem. 2019, 3, 465.

[35]

F. Peng, D. Liu, W. Zhao, G. Zheng, Y. Ji, K. Dai, L. Mi, D. Zhang, C. Liu, C. Shen, Nano Energy 2019, 65, 104068.

[36]

G. Liu, H. Guo, S. Xu, C. Hu, Z. L. Wang, Adv. Energy Mater. 2019, 9, 1900801.

[37]

P. Cheng, H. Guo, Z. Wen, C. Zhang, X. Yin, X. Li, D. Liu, W. Song, X. Sun, J. Wang, Z. L. Wang, Nano Energy 2019, 57, 432.

[38]

F. Shen, Z. Li, C. Xin, H. Guo, Y. Peng, K. Li, ACS Appl. Mater. Interfaces 2022, 14, 3437.

[39]

C. Xin, Z. Li, Q. Zhang, Y. Peng, H. Guo, S. Xie, Nano Energy 2022, 100, 107448.

[40]

A. Refaei, M. Seleem, A. Tharwat, H. Mostafa, Int. J. Energy Res. 2021, 45, 1645.

[41]

H. Yang, M. Deng, Q. Tang, W. He, C. Hu, Y. Xi, R. Liu, Z. L. Wang, Adv. Energy Mater. 2019, 9, 1901149.

[42]

Q. Zhang, M. He, X. Pan, D. Huang, H. Long, M. Jia, Z. Zhao, C. Zhang, M. Xu, S. Li, Nano Energy 2022, 103, 107810.

[43]

Z. Lin, B. Zhang, H. Guo, Z. Wu, H. Zou, J. Yang, Z. L. Wang, Nano Energy 2019, 64, 103908.

[44]

L. Chen, H. Guo, X. Xia, G. Liu, H. Shi, M. Wang, Y. Xi, C. Hu, ACS Appl. Mater. Interfaces 2015, 7, 16450.

[45]

J. Shao, T. Jiang, Z. Wang, Science China Technol. Sci. 2020, 63, 1087.

[46]

G. W. Parker, Am. J. Phys. 2002, 70, 502.

[47]

A. E. Wang, I. Greber, J. C. Angus, J. Electrost. 2019, 101, 103359.

[48]

J. An, P. Chen, C. Li, F. Li, T. Jiang, Z. L. Wang, Nano Energy 2022, 93, 106884.

[49]

D. Zhao, X. Yu, J. Wang, Q. Gao, Z. Wang, T. Cheng, Z. L. Wang, Energy Environ. Sci. 2022, 15, 3901.

Energy & Environmental Materials
Article number: e12697
Cite this article:
Shen F, Zhang Q, Guo H, et al. Investigation of Power Density Amplification in Stacked Triboelectric Nanogenerators. Energy & Environmental Materials, 2024, 7(5): e12697. https://doi.org/10.1002/eem2.12697
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return