PDF (5.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

Supramolecular Macrocycle Regulated Single-Atom MoS2@Co Catalysts for Enhanced Oxygen Evolution Reaction

Shuai Cao1Wenzhuo Wu2Chaozhong Liu2Leqian Song1Qun Xu2,3Huacheng Zhang1,4 ()Yanli Zhao4 ()
School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
Department of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
Show Author Information

Abstract

The development of active water oxidation catalysts for water splitting has stimulated considerable interest. Herein, the design and building of single atom Co sites using a supramolecular tailoring strategy are reported, that is, the introduction of pillar[4]arene[1]quinone (P4A1Q) permits mononuclear Co species stereoelectronically assembled on MoS2 matrix to construct an atomically dispersed MoS2@Co catalyst with modulated local electronic structure, definite chemical environment and enhanced oxygen evolution reaction performance. Theoretical calculations indicate that immsobilized single-Co sites exhibit an optimized adsorption capability of oxygen-containing intermediates, endowing the catalyst an excellent electrocatalytic oxygen evolution reaction activity, with a low overpotential of 370 mV at 10 mA cm−2 and a small Tafel slope of 90 mV dec−1. The extendable potential of this strategy to other electrocatalysts such as MoS2@Ni and MoS2@Zn, and other applications such as the hydrogen evolution reaction was also demonstrated. This study affords new insights into the rational design of single metal atom systems with enhanced electrocatalytic performance.

Electronic Supplementary Material

Download File(s)
eem-7-5-12702_ESM.docx (6 MB)

References

[1]

T. Wang, P. Wang, W. Zang, X. Li, D. Chen, Z. Kou, S. Mu, J. Wang, Adv. Funct. Mater. 2022, 32, 2107382.

[2]

J. Qi, Y. P. Lin, D. Chen, T. Zhou, W. Zhang, R. Cao, Angew. Chem. Int. Ed. 2020, 59, 8917.

[3]

X. Zeng, Q. Zhang, C. Jin, H. Huang, Y. Gao, Energy Environ. Mater. 2023, DOI: 10.1002/eem2.12628.

[4]

Y. Qi, Y. Zhang, L. Yang, Y. Zhao, Y. Zhu, H. Jiang, C. Li, Nat. Commun. 2022, 13, 4602.

[5]

X. Wang, S. Xi, P. Huang, Y. Du, H. Zhong, Q. Wang, A. Borgna, Y. W. Zhang, Z. Wang, H. Wang, Z. G. Yu, W. S. V. Lee, J. Xue, Nature 2022, 611, 702.

[6]

H. Yang, F. Li, S. Zhan, Y. Liu, W. Li, Q. Meng, A. Kravchenko, T. Liu, Y. Yang, Y. Fang, L. Wang, J. Guan, I. Furó, M. S. G. Ahlquist, L. Sun, Nat. Catal. 2022, 5, 414.

[7]

J. A. Turner, Science 2004, 305, 972.

[8]

F. Liu, X. Cai, Y. Tang, W. Liu, Q. Chen, P. Dong, M. Xu, Y. Tan, S. Bao, Energy Environ. Mater. 2023, DOI: 10.1002/eem2.12644.

[9]

Y. Bai, Y. Wu, X. Zhou, Y. Ye, K. Nie, J. Wang, M. Xie, Z. Zhang, Z. Liu, T. Cheng, C. Gao, Nat. Commun. 2022, 13, 6094.

[10]

Y. Chen, J. K. Seo, Y. Sun, T. A. Wynn, M. Olguin, M. Zhang, J. Wang, S. Xi, Y. Du, K. Yuan, W. Chen, A. C. Fisher, M. Wang, Z. Feng, J. Gracia, L. Huang, S. Du, H. J. Gao, Y. S. Meng, Z. J. Xu, Nat. Commun. 2022, 13, 5510.

[11]

S. Haschke, M. Mader, S. Schlicht, A. M. Roberts, A. M. Angeles-Boza, J. A. C. Barth, J. Bachmann, Nat. Commun. 2018, 9, 4565.

[12]

A. I. Nguyen, K. M. Van Allsburg, M. W. Terban, M. Bajdich, J. Oktawiec, J. Amtawong, M. S. Ziegler, J. P. Dombrowski, K. V. Lakshmi, W. S. Drisdell, J. Yano, S. J. L. Billinge, T. D. Tilley, Proc. Natl. Acad. Sci. USA 2019, 116, 11630.

[13]

G. Wang, G. Zhang, X. Ke, X. Chen, X. Chen, Y. Wang, G. Huang, J. Dong, S. Chu, M. Sui, Small 2022, 18, e2107238.

[14]

L. Li, G. Zhang, J. Xu, H. He, B. Wang, Z. Yang, S. Yang, Adv. Funct. Mater. 2023, 33, 2213304.

[15]

Y. Ping, R. J. Nielsen, W. A. Goddard, J. Am. Chem. Soc. 2017, 139, 149.

[16]

Y. Qin, T. Yu, S. Deng, X. Y. Zhou, D. Lin, Q. Zhang, Z. Jin, D. Zhang, Y. B. He, H. J. Qiu, L. He, F. Kang, K. Li, T. Y. Zhang, Nat. Commun. 2022, 13, 3784.

[17]

P. Cai, J. Huang, J. Chen, Z. Wen, Angew. Chem. Int. Ed. 2017, 56, 4858.

[18]

A. Wang, L. Cheng, X. Shen, X. Chen, W. Zhu, W. Zhao, C. Lv, Chem. Eng. J. 2020, 400, 125975.

[19]

L. Zhu, D. Susac, M. Teo, K. Wong, P. Wong, R. Parsons, D. Bizzotto, K. Mitchell, S. Campbell, J. Catal. 2008, 258, 235.

[20]

X. Yuan, H. Ge, X. Wang, C. Dong, W. Dong, M. S. Riaz, Z. Xu, J. Zhang, F. Huang, ACS Energy Lett. 2017, 2, 1208.

[21]

X. Han, C. Yu, S. Zhou, C. Zhao, H. Huang, J. Yang, Z. Liu, J. Zhao, J. Qiu, Adv. Energy Mater. 2017, 7, 1602148.

[22]

M. Chen, H. Li, C. Wu, Y. Liang, J. Qi, J. Li, E. Shangguan, W. Zhang, R. Cao, Adv. Funct. Mater. 2022, 32, 2206407.

[23]

Z. Zheng, Y. Guo, H. Wan, G. Chen, N. Zhang, W. Ma, X. Liu, S. Liang, R. Ma, Energy Environ. Mater. 2022, 5, 270.

[24]

M. S. Burke, M. G. Kast, L. Trotochaud, A. M. Smith, S. W. Boettcher, J. Am. Chem. Soc. 2015, 137, 3638.

[25]

H. Y. Wang, S. F. Hung, H. Y. Chen, T. S. Chan, H. M. Chen, B. Liu, J. Am. Chem. Soc. 2016, 138, 36.

[26]

H. Wang, S. Lu, Energy Environ. Mater. 2023, 6, e12558.

[27]

W. H. Lee, M. H. Han, Y. J. Ko, B. K. Min, K. H. Chae, H. S. Oh, Nat. Commun. 2022, 13, 605.

[28]

L. Xie, X. Li, B. Wang, J. Meng, H. Lei, W. Zhang, R. Cao, Angew. Chem. Int. Ed. 2019, 58, 18883.

[29]

Y. Wang, H. Su, Y. He, L. Li, S. Zhu, H. Shen, P. Xie, X. Fu, G. Zhou, C. Feng, D. Zhao, F. Xiao, X. Zhu, Y. Zeng, M. Shao, S. Chen, G. Wu, J. Zeng, C. Wang, Chem. Rev. 2020, 120, 12217.

[30]

K. Sathiyan, T. Mondal, P. Mukherjee, S. G. Patra, I. Pitussi, H. Kornweitz, R. Bar-Ziv, T. Zidki, Nanoscale 2022, 14, 16148.

[31]

Y. Yao, Z. Zhang, L. Jiao, Energy Environ. Mater. 2022, 5, 470.

[32]

K. Qi, X. Cui, L. Gu, S. Yu, X. Fan, M. Luo, S. Xu, N. Li, L. Zheng, Q. Zhang, J. Ma, Y. Gong, F. Lv, K. Wang, H. Huang, W. Zhang, S. Guo, W. Zheng, P. Liu, Nat. Commun. 2019, 10, 5231.

[33]

Y. Ma, D. Leng, X. Zhang, J. Fu, C. Pi, Y. Zheng, B. Gao, X. Li, N. Li, P. K. Chu, Y. Luo, K. Huo, Small 2022, 18, e2203173.

[34]

S. Park, J. Park, H. Abroshan, L. Zhang, J. K. Kim, J. Zhang, J. Guo, S. Siahrostami, X. Zheng, ACS Energy Lett. 2018, 3, 2685.

[35]

N. Ran, E. Song, Y. Wang, Y. Zhou, J. Liu, Energ. Environ. Sci. 2022, 15, 2071.

[36]

Z. Zhang, C. Liu, C. Feng, P. Gao, Y. Liu, F. Ren, Y. Zhu, C. Cao, W. Yan, R. Si, S. Zhou, J. Zeng, Nano Lett. 2019, 19, 8774.

[37]

H. Xu, Z. X. Shi, Y. X. Tong, G. R. Li, Adv. Mater. 2018, 30, e1705442.

[38]

P. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu, H. Cheng, X. Lu, H. Ding, C. Wu, Y. Xie, Angew. Chem. Int. Ed. 2016, 55, 2488.

[39]

J. X. Feng, H. Xu, Y. T. Dong, S. H. Ye, Y. X. Tong, G. R. Li, Angew. Chem. Int. Ed. 2016, 55, 3694.

[40]

J. Fester, A. Makoveev, D. Grumelli, R. Gutzler, Z. Sun, J. Rodriguez-Fernandez, K. Kern, J. V. Lauritsen, Angew. Chem. Int. Ed. 2018, 57, 11893.

[41]

J. Ji, Y. Hou, S. Zhou, T. Qiu, L. Zhang, L. Ma, C. Qian, S. Zhou, C. Liang, M. Ling, Carbon Energy 2022, 5, e216.

[42]

M. Liu, J. Zhu, Y. Liu, F. Gong, R. Li, H. Chen, M. Zhao, Q. Jiang, J. Liu, S. Ye, Chem. Eng. J. 2022, 446, 137080.

[43]

M. S. Kim, D. T. Tran, T. H. Nguyen, V. A. Dinh, N. H. Kim, J. H. Lee, Energy Environ. Mater. 2022, 5, 1340.

[44]

L. Ji, P. Yan, C. Zhu, C. Ma, W. Wu, C. Wei, Y. Shen, S. Chu, J. Wang, Y. Du, J. Chen, X. Yang, Q. Xu, Appl. Catal. B 2019, 251, 87.

[45]

W. Wu, C. Niu, C. Wei, Y. Jia, C. Li, Q. Xu, Angew. Chem. Int. Ed. 2019, 58, 2029.

[46]

B. Gao, Y. Zhao, X. Du, D. Li, S. Ding, Y. Li, C. Xiao, Z. Song, Chem. Eng. J. 2021, 411, 128567.

[47]

C. Zhang, X. Wang, M. Li, Z. Zhang, Y. Wang, R. Si, F. Wang, Chin. J. Catal. 2016, 37, 1569.

[48]

Y. Wang, K. Qi, S. Yu, G. Jia, Z. Cheng, L. Zheng, Q. Wu, Q. Bao, Q. Wang, J. Zhao, X. Cui, W. Zheng, Nano-Micro Lett. 2019, 11, 102.

[49]

C. Li, Z. Chen, H. Yi, Y. Cao, L. Du, Y. Hu, F. Kong, R. Kramer Campen, Y. Gao, C. Du, G. Yin, I. Y. Zhang, Y. Tong, Angew. Chem. Int. Ed. 2020, 59, 15902.

[50]

S. Cao, L. Zhou, C. Liu, H. Zhang, Y. L. Zhao, Biosens. Bioelectron. 2021, 181, 113164.

[51]

C. Han, Z. Zhang, G. Yu, F. Huang, Chem. Commun. 2012, 48, 9876.

[52]

H. C. Zhang, Z. N. Liu, Y. L. Zhao, Chem. Soc. Rev. 2018, 47, 5491.

[53]

C. Xie, W. Hu, W. Hu, Y. A. Liu, J. Huo, J. Li, B. Jiang, K. Wen, Chin. J. Chem. 2015, 33, 379.

[54]

S. Cao, H. Zhang, Y. Zhao, Y. L. Zhao, eScience 2021, 1, 28.

[55]

T. Ogoshi, S. Kanai, S. Fujinami, T. A. Yamagishi, Y. Nakamoto, J. Am. Chem. Soc. 2008, 130, 5022.

[56]

X. Li, X. I. Pereira-Hernandez, Y. Chen, J. Xu, J. Zhao, C. W. Pao, C. Y. Fang, J. Zeng, Y. Wang, B. C. Gates, J. Liu, Nature 2022, 611, 284.

[57]

J. Yang, H. W. Liu, W. N. Martens, R. L. Frost, J. Phys. Chem. C 2010, 114, 111.

[58]

S. G. Lyapin, A. N. Utyuzh, A. E. Petrova, A. P. Novikov, T. A. Lograsso, S. M. Stishov, J. Phys. Condens. Matter 2014, 26, 396001.

[59]

B. Rivas-Murias, V. Salgueiriño, J. Raman Spectrosc. 2017, 48, 837.

[60]

C. Chen, H. Li, J. Chen, D. Li, W. Chen, J. Dong, M. Sun, Y. Li, Energy Environ. Mater. 2023, 6, e12346.

[61]

Y. Wen, C. Liu, R. Huang, H. Zhang, X. Li, F. P. Garcia de Arquer, Z. Liu, Y. Li, B. Zhang, Nat. Commun. 2022, 13, 4871.

[62]

J. Zheng, X. Peng, Z. Xu, J. Gong, Z. Wang, ACS Catal. 2022, 12, 10245.

[63]

J. Zhao, Z. Chen, J. Am. Chem. Soc. 2017, 139, 12480.

[64]

S. Cao, L. Song, H. Zhang, J. Han, Y. Zhao, Chin. Chem. Lett. 2023, 34, 108479.

[65]

J. Hafner, Comput. Phys. Commun. 2007, 177, 6.

[66]

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[67]

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

[68]

G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354.

[69]

M. Yu, D. R. Trinkle, J. Chem. Phys. 2011, 134, 064111.

[70]

V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, Comput. Phys. Commun. 2021, 267, 108033.

Energy & Environmental Materials
Article number: e12702
Cite this article:
Cao S, Wu W, Liu C, et al. Supramolecular Macrocycle Regulated Single-Atom MoS2@Co Catalysts for Enhanced Oxygen Evolution Reaction. Energy & Environmental Materials, 2024, 7(5): e12702. https://doi.org/10.1002/eem2.12702
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return