AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Li-Rich Organosulfur Cathode with Boosted Kinetics for High-Energy Lithium-Sulfur Batteries

Ting Ma1,2Jiaojiao Deng3Yuxiao Lin4( )Qinghua Liang5Liang Hu6Xiaohu Wang2Jun Liu2Xinsheng Zhao4Yinwei Li4Ding Nan1,2 ( )Xiaoliang Yu6 ( )
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
Inner Mongolia Key Laboratory of Graphite and Graphene for Energy Storage and Coating, School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Shenzhen Key Laboratory on Power Battery Safety and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School (SIGS), Shenzhen 518071, China
School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
Department of Mechanical Engineering, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
Show Author Information

Abstract

Organosulfur materials containing sulfur–sulfur bonds are an emerging class of high-capacity cathodes for lithium storage. However, it remains a great challenge to achieve rapid conversion reaction kinetics at practical testing conditions of high cathode mass loading and low electrolyte utilization. In this study, a Li-rich pyrolyzed polyacrylonitrile/selenium disulfide (pPAN/Se2S3) composite cathode is synthesized by deep lithiation to address the above challenges. The Li-rich molecular structure significantly boosts the lithium storage kinetics by accelerating lithium diffusivity and improving electronic conductivity. Even under practical test conditions requiring a lean electrolyte (Electrolyte/sulfur ratio of 4.1 μL mg−1) and high loading (7 mg cm−2 of pPAN/Se2S3), DL-pPAN/Se2S3 exhibits a specific capacity of 558 mAh g−1, maintaining 484 mAh g−1 at the 100th cycle with an average Coulombic efficiency of near 100%. Moreover, it provides (electro)chemically stable Li resources to offset Li consumption over charge–discharge cycles. As a result the as-fabricated anode-free cell shows a superior cycling stability with 90% retention of the initial capacity over 45 cycles. This study provides a novel approach for fabricating high-energy and stable Li–SPAN cells.

Electronic Supplementary Material

Download File(s)
eem-7-4-e12704_ESM.docx (5.4 MB)

References

[1]

M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 2018, 30, 1800561.

[2]

Y. M. Zhao, F. S. Yue, S. C. Li, Y. Zhang, Z. R. Tian, Q. Xu, S. Xin, Y. G. Guo, InfoMat 2021, 3, 460.

[3]

Z. Han, S. Li, R. Xiong, Z. Jiang, M. Sun, W. Hu, L. Peng, R. He, H. Zhou, C. Yu, Adv. Funct. Mater. 2022, 32, 2108669.

[4]

J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Nat. Energy 2019, 4, 180.

[5]

Z. W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 2016, 45, 5605.

[6]

Y. Guo, H. Li, T. Zhai, Adv. Mater. 2017, 29, 1700007.

[7]

Y. Chen, T. Wang, H. Tian, D. Su, Q. Zhang, G. Wang, Adv. Mater. 2021, 33, 2003666.

[8]

J. Sun, T. Wang, Y. Gao, Z. Pan, R. Hu, J. Wang, InfoMat 2022, 4, e12359.

[9]

C. P. Yang, S. Xin, Y. X. Yin, H. Ye, J. Zhang, Y. G. Guo, Angew. Chem. Int. Ed. 2013, 52, 8363.

[10]

L. Hencz, H. Chen, Z. Wu, S. Qian, S. Chen, X. Gu, X. Liu, C. Yan, S. Zhang, Exp. Dermatol. 2022, 2, 20210131.

[11]

S. S. Zhang, Energies 2014, 7, 4588.

[12]

G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen, J. Lu, Adv. Mater. 2018, 30, 1705590.

[13]

Z. Han, S. Li, Y. Wu, C. Yu, S. Cheng, J. Xie, J. Mater. Chem. A 2021, 9, 24215.

[14]

X. Yu, J. Zhao, R. Lv, Q. Liang, C. Zhan, Y. Bai, Z.-H. Huang, W. Shen, F. Kang, J. Mater. Chem. A 2015, 3, 18400.

[15]

X. Yu, J. Deng, R. Lv, Z.-H. Huang, B. Li, F. Kang, Energy Storage Mater. 2019, 20, 14.

[16]

Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu, K. Wang, H. Li, C. J. Harris, K. Xi, R. V. Kumar, Adv. Energy Mater. 2019, 9, 1900953.

[17]

Z. Cui, C. Zu, W. Zhou, A. Manthiram, J. B. Goodenough, Adv. Mater. 2016, 28, 6926.

[18]

Y.-S. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166.

[19]

Z. Xiao, Z. Yang, L. Wang, H. Nie, M. E. Zhong, Q. Lai, X. Xu, L. Zhang, S. Huang, Adv. Mater. 2015, 27, 2891.

[20]

X. Yu, T. Liao, J. Tang, K. Zhang, S. Tang, R.-S. Gao, S. Lin, L.-C. Qin, Adv. Energy Sustainability Res. 2021, 2, 2100053.

[21]

W. Shin, L. Zhu, H. Jiang, W. F. Stickle, C. Fang, C. Liu, J. Lu, X. Ji, Mater. Today 2020, 40, 63.

[22]

Z. Jiang, Z. Zeng, W. Hu, Z. Han, S. Cheng, J. Xie, Energy. Storage Mater. 2021, 36, 333.

[23]

H. Liu, J. Holoubek, H. Zhou, A. Chen, N. Chang, Z. Wu, S. Yu, Q. Yan, X. Xing, Y. Li, Mater. Today 2021, 42, 17.

[24]

J. Lian, W. Guo, Y. Fu, J. Am. Chem. Soc. 2021, 143, 11063.

[25]

P. Sang, Q. Chen, D.-Y. Wang, W. Guo, Y. Fu, Chem. Rev. 2023, 123, 1262.

[26]

H. Yang, J. Chen, J. Yang, J. Wang, Angew. Chem. Int. Ed. 2020, 132, 7374.

[27]

Z. Jiang, H.-J. Guo, Z. Zeng, Z. Han, W. Hu, R. Wen, J. Xie, ACS Nano 2020, 14, 13784.

[28]

W. Wang, Z. Cao, G. A. Elia, Y. Wu, W. Wahyudi, E. Abou-Hamad, A.-H. Emwas, L. Cavallo, L.-J. Li, J. Ming, ACS. Energy Lett. 2018, 3, 2899.

[29]

C. Luo, Y. Zhu, O. Borodin, T. Gao, X. Fan, Y. Xu, K. Xu, C. Wang, Adv. Funct. Mater. 2016, 26, 745.

[30]

W. J. Chen, B. Q. Li, C. X. Zhao, M. Zhao, T. Q. Yuan, R. C. Sun, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 10732.

[31]

C. Luo, E. Hu, K. J. Gaskell, X. Fan, T. Gao, C. Cui, S. Ghose, X.-Q. Yang, C. Wang, Proc. Natl. Acad. Sci. 2020, 117, 14712.

[32]

M. A. Weret, C.-F. J. Kuo, W.-N. Su, T. S. Zeleke, C.-J. Huang, N. A. Sahalie, T. A. Zegeye, Z. T. Wondimkun, F. W. Fenta, B. A. Jote, J. Power Sources 2022, 541, 231693.

[33]

Z. Li, J. Zhang, Y. Lu, X. W. Lou, Sci. Adv. 2018, 4, eaat1687.

[34]

Y. Liu, A. K. Haridas, K.-K. Cho, Y. Lee, J.-H. Ahn, J. Phys. Chem. C 2017, 121, 26172.

[35]

X. Chen, L. Peng, L. Wang, J. Yang, Z. Hao, J. Xiang, K. Yuan, Y. Huang, B. Shan, L. Yuan, Nat. Commun. 2019, 10, 1021.

[36]

S. Ma, Z. Zhang, Y. Wang, Z. Yu, C. Cui, M. He, H. Huo, G. Yin, P. Zuo, Chem. Eng. J. 2021, 418, 129410.

[37]

L. Lin, K. Qin, Q. Zhang, L. Gu, L. Suo, Y. S. Hu, H. Li, X. Huang, L. Chen, Angew. Chem. Int. Ed. 2021, 60, 8289.

[38]

S. Langrud, A. A. Razzaq, S. Santhanagopalan, R. Brow, W. Xing, J. Electrochem. Soc. 2022, 169, 070514.

[39]

Z. Jiang, H.-J. Guo, Z. Zeng, X. Chen, Y. Lei, X. Liang, Z. Han, W. Hu, J. Feng, R. Wen, ACS Appl. Mater. Interfaces 2021, 13, 41555.

[40]

Y. Deng, H. Xu, Z. Bai, B. Huang, J. Su, G. Chen, J. Power Sources 2015, 300, 386.

[41]

M. Wang, H. Yang, K. Shen, H. Xu, W. Wang, Z. Yang, L. Zhang, J. Chen, Y. Huang, M. Chen, Small Methods 2020, 4, 2000353.

[42]

S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J. G. Zhang, Adv. Mater. 2018, 30, 1706102.

[43]

X. Zhao, C. Wang, Z. Li, X. Hu, A. A. Razzaq, Z. Deng, J. Mater. Chem. A 2021, 9, 19282.

[44]

Q. Zhang, S. Liu, Z. Lin, K. Wang, M. Chen, K. Xu, W. Li, Nano Energy 2020, 74, 104860.

[45]

Z. Piao, P. Xiao, R. Luo, J. Ma, R. Gao, C. Li, J. Tan, K. Yu, G. Zhou, H. M. Cheng, Adv. Mater. 2022, 34, 2108400.

[46]

C. Yan, Y. X. Yao, X. Chen, X. B. Cheng, X. Q. Zhang, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 130, 14251.

[47]

X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1605989.

[48]

X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, Chem 2018, 4, 174.

[49]

S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson, J. Xu, P. Wang, L. Chen, J. Zhang, T. Deng, Angew. Chem. Int. Ed. 2021, 60, 3661.

[50]

M. Itagaki, K. Honda, Y. Hoshi, I. Shitanda, J. Electroanal. Chem. 2015, 737, 78.

[51]

M. Barghamadi, A. S. Best, A. I. Bhatt, A. F. Hollenkamp, P. J. Mahon, M. Musameh, T. Rüther, J. Power Sources 2015, 295, 212.

[52]

J. Wu, L. Yuan, Z. Li, X. Xie, Y. Huang, Mater. Horiz. 2020, 7, 2619.

[53]

J. Qian, B. D. Adams, J. Zheng, W. Xu, W. A. Henderson, J. Wang, M. E. Bowden, S. Xu, J. Hu, J. G. Zhang, Adv. Funct. Mater. 2016, 26, 7094.

[54]

H. J. Peng, J. Q. Huang, X. B. Cheng, Q. Zhang, Adv. Energy Mater. 2017, 7, 1700260.

[55]

S. Nanda, A. Gupta, A. Manthiram, Adv. Energy Mater. 2018, 8, 1801556.

[56]

H. Cheng, C. Gao, N. Cai, M. Wang, Chem. Commun. 2021, 57, 3708.

[57]

S. Nanda, A. Bhargav, A. Manthiram, Joule 2020, 4, 1121.

[58]

J. Chen, J. Xiang, X. Chen, L. Yuan, Z. Li, Y. Huang, Energy Storage Mater. 2020, 30, 179.

[59]

S. Nanda, H. Y. Asl, A. Bhargav, A. Manthiram, Cell Rep. Phys. Sci. 2022, 3, 100808.

[60]

N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan, L. Wang, P.-F. Wang, T. Jin, S.-C. Liou, H. Yang, ACS Energy Lett. 2021, 6, 1839.

[61]

W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.

[62]

H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.

[63]

S. Grimme, J. Comput. Chem. 2006, 27, 1787.

Energy & Environmental Materials
Article number: e12704
Cite this article:
Ma T, Deng J, Lin Y, et al. Li-Rich Organosulfur Cathode with Boosted Kinetics for High-Energy Lithium-Sulfur Batteries. Energy & Environmental Materials, 2024, 7(4): e12704. https://doi.org/10.1002/eem2.12704

35

Views

0

Downloads

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 30 June 2023
Revised: 02 August 2023
Published: 20 August 2023
© 2024 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return