AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Modulating the Electrolyte Inner Solvation Structure via Low Polarity Co-solvent for Low-Temperature Aqueous Zinc-Ion Batteries

Yongchao Kang1Feng Zhang1Houzhen Li1Wangran Wei1Huitong Dong1Hao Chen1Yuanhua Sang1Hong Liu1,2 ( )Shuhua Wang1 ( )
State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
Show Author Information

Abstract

Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety; however, their applications are restricted by their poor low-temperature performance. Herein, a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO4)2. The diglyme disrupts the hydrogen-bonding network of water and lowers the freezing point of the electrolyte to −105 °C. The designed electrolyte achieves ionic conductivity up to 16.18 mS cm−1 at −45 °C. The diglyme and ClO4 reconfigure the solvated structure of Zn2+, which is more favorable for the desolvation of Zn2+ at low temperatures. In addition, the diglyme effectively suppresses the dendrites, hydrogen evolution reaction, and by-products of the zinc anode, improving the cycle stability of the battery. At −20 °C, a Zn||Zn symmetrical cell is cycled for 5200 h at 1 mA cm−2 and 1 mA h cm−2, and a Zn||polyaniline battery achieves an ultra-long cycle life of 10 000 times. This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries.

Electronic Supplementary Material

Download File(s)
eem-7-5-e12707_ESM.docx (4.9 MB)

References

[1]

M. Armand, J. M. Tarascon, Nature 2008, 451, 652.

[2]

D. Larcher, J. M. Tarascon, Nat. Chem. 2015, 7, 19.

[3]

J. F. Parker, C. N. Chervin, I. R. Pala, M. Machler, M. F. Burz, J. W. Long, D. R. Rolison, Science 2017, 356, 415.

[4]

H. Z. Dou, M. Xu, B. Y. Wang, Z. Zhang, G. B. Wen, Y. Zheng, D. Luo, L. Zhao, A. P. Yu, L. H. Zhang, Z. Y. Jiang, Z. W. Chen, Chem. Soc. Rev. 2021, 50, 986.

[5]

M. Li, X. P. Wang, J. S. Hu, J. X. Zhu, C. J. Niu, H. Z. Zhang, C. Li, B. K. Wu, C. H. Han, L. Q. Mai, Angew. Chem. Int. Ed. 2023, 62, e202215552.

[6]

K. J. Zhu, Z. Q. Sun, Z. P. Li, P. Liu, H. X. Li, L. F. Jiao, Adv. Energy Mater. 2023, 13, 2203708.

[7]

M. Li, Z. L. Li, X. P. Wang, J. S. Meng, X. Liu, B. K. Wu, C. H. Han, L. Q. Mai, Energy Environ. Sci. 2021, 14, 3796.

[8]

Z. X. Pei, Z. W. Yuan, C. J. Wang, S. L. Zhao, J. Y. Fei, L. Wei, J. S. Chen, C. Wang, R. J. Qi, Z. W. Liu, Y. Chen, Angew. Chem. 2020, 132, 4823.

[9]

F. N. Mo, G. J. Liang, Q. Q. Meng, Z. X. Liu, H. F. Li, J. Fan, C. Y. Zhi, Energy Environ. Sci. 2019, 12, 706.

[10]

Y. C. Yan, S. D. Duan, B. Liu, S. W. Wu, Y. Alsaid, B. W. Yao, S. Nandi, Y. J. Du, T. W. Wang, Y. Z. Li, X. M. He, Adv. Mater. 2023, 35, 2211673.

[11]

M. H. Chen, S. A. Xie, X. Y. Zhao, W. H. Zhou, Y. Li, J. W. Zhang, Z. Chen, D. L. Chao, Energy Storage Mater. 2022, 51, 683.

[12]

T. Jin, X. Ji, P. F. Wang, K. J. Zhu, J. X. Zhang, L. S. Cao, L. Chen, C. Y. Cui, T. Deng, S. F. Liu, N. Piao, Y. C. Liu, C. Shen, K. Y. Xie, L. F. Jiao, C. S. Wang, Angew. Chem. Int. Ed. 2021, 60, 11943.

[13]

Q. Zhang, Y. L. Ma, Y. Lu, L. Li, F. Wan, K. Zhang, J. Chen, Nat. Commun. 2020, 11, 10.

[14]

S. Y. Cai, X. Y. Chu, C. Liu, H. W. Lai, H. Chen, Y. Q. Jiang, F. Guo, Z. K. Xu, C. S. Wang, C. Gao, Adv. Mater. 2021, 33, 2007470.

[15]

H. R. Du, X. Q. Qi, L. Qie, Y. H. Huang, Adv. Funct. Mater. 2023, 33, 2302546.

[16]

N. N. Chang, T. Y. Li, R. Li, S. N. Wang, Y. B. Yin, H. M. Zhang, X. F. Li, Energy Environ. Sci. 2020, 13, 3527.

[17]

Q. Y. Ma, R. Gao, Y. Z. Liu, H. Z. Dou, Y. Zheng, T. Or, L. X. Yang, Q. Y. Li, Q. Cu, R. F. Feng, Z. Zhang, Y. H. Nie, B. H. Ren, D. Luo, X. Wang, A. P. Yu, Z. W. Chen, Adv. Mater. 2022, 34, 2207344.

[18]

Q. S. Nian, J. Y. Wang, S. Liu, T. J. Sun, S. B. Zheng, Y. Zhang, Z. L. Tao, J. Chen, Angew. Chem. Int. Ed. 2019, 58, 16994.

[19]

C. L. You, R. Y. Wu, X. H. Yuan, L. L. Liu, J. L. Ye, L. J. Fu, P. Han, Y. P. Wu, Energy Environ. Sci. 2023, 16, 5096.

[20]

T. C. Li, Y. Lim, X. L. Li, S. Z. Luo, C. J. Lin, D. L. Fang, S. W. Xia, Y. Wang, H. Y. Yang, Adv. Energy Mater. 2022, 12, 2103231.

[21]

F. W. Ming, Y. P. Zhu, G. Huang, A. H. Emwas, H. F. Liang, Y. Cui, H. N. Alshareef, J. Am. Chem. Soc. 2022, 144, 7160.

[22]

X. Shi, J. Wang, F. Yang, X. Q. Liu, Y. X. Yu, X. H. Lu, Adv. Funct. Mater. 2023, 33, 2211917.

[23]

Y. Dong, N. Zhang, Z. D. Wang, J. H. Li, Y. X. Ni, H. L. Hu, F. Y. Cheng, J. Energy Chem. 2023, 83, 324.

[24]

Z. Hou, Z. H. Lu, Q. W. Chen, B. Zhang, Energy Storage Mater. 2021, 42, 517.

[25]

V. M. Wallace, N. R. Dhumal, F. M. Zehentbauer, H. J. Kim, J. Kiefer, J. Phys. Chem. B 2015, 119, 14780.

[26]

Y. Shi, R. Wang, S. S. Bi, M. Yang, L. L. Liu, Z. Q. Niu, Adv. Funct. Mater. 2023, 33, 2214546.

[27]

Y. Ma, Q. Zhang, L. Liu, Y. Li, H. Li, Z. Yan, J. Chen, Natl. Sci. Rev. 2022, 9, nwac051.

[28]

C. L. Song, Z. S. Gong, C. Bai, F. S. Cai, Z. H. Yuan, X. Z. Liu, Nano Res. 2022, 15, 3170.

[29]

S. W. Huang, L. Hou, T. Y. Li, Y. C. Jiao, P. Y. Wu, Adv. Mater. 2022, 34, 2110140.

[30]

L. C. Miao, R. H. Wang, W. L. Xin, L. Zhang, Y. H. Geng, H. L. Peng, Z. C. Yan, D. T. Jiang, Z. F. Qian, Z. Q. Zhu, Energy Storage Mater. 2022, 49, 445.

[31]

F. Zhang, M. Du, Z. Miao, H. Li, W. Dong, Y. Sang, H. Jiang, W. Li, H. Liu, S. Wang, InfoMat 2022, 4, e12346.

[32]

J. N. Hao, L. B. Yuan, C. Ye, D. L. Chao, K. Davey, Z. P. Guo, S. Z. Qiao, Angew. Chem. Int. Ed. 2021, 60, 7366.

[33]

A. Naveed, H. J. Yang, J. Yang, Y. N. Nuli, J. L. Wang, Angew. Chem. Int. Ed. 2019, 58, 2760.

[34]

Z. Y. Miao, F. Zhang, H. Zhao, M. Du, H. Z. Li, H. C. Jiang, W. Z. Li, Y. H. Sang, H. Liu, S. H. Wang, Adv. Funct. Mater. 2022, 32, 2111635.

Energy & Environmental Materials
Article number: e12707
Cite this article:
Kang Y, Zhang F, Li H, et al. Modulating the Electrolyte Inner Solvation Structure via Low Polarity Co-solvent for Low-Temperature Aqueous Zinc-Ion Batteries. Energy & Environmental Materials, 2024, 7(5): e12707. https://doi.org/10.1002/eem2.12707

32

Views

0

Downloads

19

Crossref

18

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 30 October 2023
Revised: 29 November 2023
Published: 04 December 2023
© 2024 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return