AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Enhancing Direct Electrochemical CO2 Electrolysis by Introducing A-Site Deficiency for the Dual-Phase Pr(Ca)Fe(Ni)O3−δ Cathode

Wanhua Wang1,2Haixia Li1Ka-Young Park1Taehee Lee1Dong Ding2 ( )Fanglin Chen1 ( )
Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
Energy & Environmental Science and Technology, Idaho National Laboratory, Idaho Falls, ID 83415, USA
Show Author Information

Abstract

High-temperature CO2 electrolysis via solid oxide electrolysis cells (CO2–SOECs) has drawn special attention due to the high energy convention efficiency, fast electrode kinetics, and great potential in carbon cycling. However, the development of cathode materials with high catalytic activity and chemical stability for pure CO2 electrolysis is still a great challenge. In this work, A-site cation deficient dual-phase material, namely (Pr0.4Ca0.6)xFe0.8Ni0.2O3−δ (PCFN, x = 1, 0.95, and 0.9), has been designed as the fuel electrode for a pure CO2–SOEC, which presents superior electrochemical performance. Among all these compositions, (Pr0.4Ca0.6)0.95Fe0.8Ni0.2O3−δ (PCFN95) exhibited the lowest polarization resistance of 0.458 Ω cm2 at open-circuit voltage and 800 ℃. The application of PCFN95 as the cathode in a single cell yields an impressive electrolysis current density of 1.76 A cm−2 at 1.5 V and 800 ℃, which is 76% higher than that of single cells with stoichiometric Pr0.4Ca0.6Fe0.8Ni0.2O3−δ (PCFN100) cathode. The effects of A-site deficiency on materials' phase structure and physicochemical properties are also systematically investigated. Such an enhancement in electrochemical performance is attributed to the promotion of effective CO2 adsorption, as well as the improved electrode kinetics resulting from the A-site deficiency.

Electronic Supplementary Material

Download File(s)
eem-7-5-e12715_ESM.docx (5.8 MB)

References

[1]

P. Boldrin, N. P. Brandon, Nat. Catal. 2019, 2, 571.

[2]

L. Xie, J. Liang, C. Priest, T. Wang, D. Ding, G. Wu, Q. Li, Chem. Commun. 2021, 57, 1839.

[3]

B. Wang, J. Zhao, H. Chen, Y.-X. Weng, H. Tang, Z. Chen, W. Zhu, Y. She, J. Xia, H. Li, Appl. Catal. B Environ. 2021, 293, 120182.

[4]

K. Zhi, Z. Li, B. Wang, J. J. Klemeš, L. Guo, Process. Saf. Environ. Prot. 2023, 172, 681.

[5]

Y. Wang, L. Huang, S. Li, C. Liu, H. He, Energy Environ. Mater. 2023, DOI: 10.1002/eem2.12593.

[6]

M. Li, B. Hua, L.-C. Wang, J. D. Sugar, W. Wu, Y. Ding, J. Li, D. Ding, Nat. Catal. 2021, 4, 274.

[7]

K.-Y. Park, T. Lee, W. Wang, H. Li, F. Chen, J. Mater. Chem. A 2023, 11, 21354.

[8]

Y. Cheng, J. Chen, C. Yang, H. Wang, B. Johannessen, L. Thomsen, M. Saunders, J. Xiao, S. Yang, S. P. Jiang, Energy Environ. Mater. 2023, 6, e12278.

[9]

C. Zhu, S. Hou, X. Hu, J. Lu, F. Chen, K. Xie, Nat. Commun. 2019, 10, 1173.

[10]

S. Lee, M. Kim, K. T. Lee, J. T. S. Irvine, T. H. Shin, Adv. Energy Mater. 2021, 11, 2100339.

[11]

S. Zhang, C. Yang, Y. Jiang, P. Li, C. Xia, J. Energy Chem. 2023, 77, 300.

[12]

G. Tsekouras, J. T. S. Irvine, J. Mater. Chem. 2011, 21, 9367.

[13]

Y. Song, Z. Zhou, X. Zhang, Y. Zhou, H. Gong, H. Lv, Q. Liu, G. Wang, X. Bao, J. Mater. Chem. A 2018, 6, 13661.

[14]

Y. Li, X. Chen, Y. Yang, Y. Jiang, C. Xia, ACS Sustain. Chem. Eng. 2017, 5, 11403.

[15]

A. Jun, J. Kim, J. Shin, G. Kim, Angew. Chemie Int. Ed. 2016, 55, 12512.

[16]

F. Bidrawn, G. Kim, G. Corre, J. T. S. Irvine, J. M. Vohs, R. J. Gorte, Electrochem. Solid-State Lett. 2008, 11, B167.

[17]

X. Xi, J. Liu, Y. Fan, L. Wang, J. Li, M. Li, J. L. Luo, X. Z. Fu, Nano Energy 2021, 82, 105707.

[18]

Z. Zhang, Y. Zheng, L. Qian, D. Luo, H. Dou, G. Wen, A. Yu, Z. Chen, Adv. Mater. 2022, 34, 2201547.

[19]

J. Yu, R. Ran, Y. Zhong, W. Zhou, M. Ni, Z. Shao, Energy Environ. Mater. 2020, 3, 121.

[20]

C. Zhu, L. Hou, S. Li, L. Gan, K. Xie, J. Power Sources 2017, 363, 177.

[21]

P. K. Addo, B. Molero-Sanchez, M. Chen, S. Paulson, V. Birss, Fuel Cells 2015, 15, 689.

[22]

Y. Tian, H. Zheng, L. Zhang, B. Chi, J. Pu, J. Li, J. Electrochem. Soc. 2018, 165, F17.

[23]

K.-J. Lee, M.-J. Lee, S. Park, H.-J. Hwang, K.-J. Lee, M.-J. Lee, S. Park, H.-J. Hwang, J. Korean Ceram. Soc. 2016, 53, 489.

[24]

N. Ortiz-Vitoriano, I. R. De Larramendi, S. N. Cook, M. Burriel, A. Aguadero, J. A. Kilner, T. Rojo, Adv. Funct. Mater. 2013, 23, 5131.

[25]

H. Li, W. Wang, L. Wang, M. Wang, K.-Y. Park, T. Lee, A. Heyden, D. Ding, F. Chen, ACS Appl. Mater. Interfaces 2023, 15, 43732.

[26]

Y. Tian, L. Zhang, Y. Liu, L. Jia, J. Yang, B. Chi, J. Pu, J. Li, J. Mater. Chem. A 2019, 7, 6395.

[27]

Z. Jie, L. I. Chen, K. Linglong, W. U. Xuewei, M. A. Yongchang, J. Rare Earths 2011, 29, 1066.

[28]

Z. Heng, Y. Wan, C. Xia, J. Power Sources 2022, 537, 231535.

[29]

E. Magnone, E. Traversa, M. Miyayama, J. Electroceram. 2010, 24, 122.

[30]

N. Ortiz-Vitoriano, I. R. De Larramendi, I. G. De Muro, A. Larranaga, J. I. R. De Larramendi, T. Rojo, J. Mater. Chem. 2011, 21, 9682.

[31]

K. Gupta, S. Singh, M. S. R. Rao, Nano Energy 2015, 11, 146.

[32]

J. Qi, L. Bian, T. Ting, C. Liu, L. Yang, Y. Xu, J. Peng, X. Song, S. An, J. Power Sources 2023, 570, 233032.

[33]

Y. Li, Y. Li, L. Yu, Q. Hu, Q. Wang, K. Maliutina, L. Fan, J. Power Sources 2021, 491, 229599.

[34]

Y. Xie, J. Xiao, D. Liu, J. Liu, C. Yang, J. Electrochem. Soc. 2015, 162, F397.

[35]

G. Tao, K. R. Sridhar, C. L. Chan, Solid State Ionics 2004, 175, 621.

[36]

Z. Cao, B. Wei, J. Miao, Z. Wang, Z. Lü, W. Li, Y. Zhang, X. Huang, X. Zhu, Q. Feng, Y. Sui, Electrochem. Commun. 2016, 69, 80.

[37]

K. Zhang, Y. Zhao, W. He, P. Zhao, D. Zhang, T. He, Y. Wang, T. Liu, Energ. Technol. 2020, 8, 2000539.

[38]

Y. Yang, Y. Li, Y. Jiang, M. Zheng, T. Hong, X. Wu, C. Xia, Electrochim. Acta 2018, 284, 159.

[39]

Z. Yang, C. Ma, N. Wang, X. Jin, C. Jin, S. Peng, J. CO2 Util. 2019, 33, 445.

[40]

X. Yang, K. Sun, M. Ma, C. Xu, R. Ren, J. Qiao, Z. Wang, S. Zhen, R. Hou, W. Sun, Appl. Catal. B Environ. 2020, 272, 118968.

[41]

Y. Jiang, Y. Yang, C. Xia, H. J. M. Bouwmeester, J. Mater. Chem. A 2019, 7, 22939.

[42]

Y. Hou, L. Wang, L. Bian, Y. Wang, K. Chou, R. V. Kumar, Electrochim. Acta 2020, 342, 136026.

[43]

Y. Li, P. Li, B. Hu, C. Xia, J. Mater. Chem. A 2016, 4, 9236.

[44]

G. Tao, K. R. Sridhar, C. L. Chan, Solid State Ionics 2004, 175, 615.

[45]

Y. Li, Y. Li, Y. Wan, Y. Xie, J. Zhu, H. Pan, X. Zheng, C. Xia, Adv. Energy Mater. 2019, 9, 1803156.

[46]

W. Wang, H. Li, C. Y. R. Vera, J. Lin, K.-Y. Park, T. Lee, D. Ding, F. Chen, J. Mater. Chem. A 2023, 11, 9039.

[47]

S. Hu, L. Zhang, L. Cai, Z. Cao, Q. Jiang, W. Yu, Y. Wu, X. Zhu, W. Yang, J. Mater. Chem. A 2020, 8, 21053.

[48]

Y. Jiang, F. Chen, C. Xia, J. Power Sources 2021, 493, 229713.

[49]

W. Bian, W. Wu, B. Wang, W. Tang, M. Zhou, C. Jin, H. Ding, W. Fan, Y. Dong, J. Li, Nature 2022, 604, 479.

[50]

Y. Zhou, L. Lin, Y. Song, X. Zhang, H. Lv, Q. Liu, Z. Zhou, N. Ta, G. Wang, X. Bao, Nano Energy 2020, 71, 104598.

[51]

D. Schweke, S. Zalkind, S. Attia, J. Bloch, J. Phys. Chem. C 2018, 122, 9947.

[52]

Y. Mao, S. S. Wong, Adv. Mater. 2005, 17, 2194.

[53]

Z. Sun, X. Wu, C. K. Russell, M. Darby Dyar, E. C. Sklute, S. Toan, M. Fan, L. Duan, W. Xiang, J. Mater. Chem. A 2019, 7, 1216.

[54]

Z. Sun, B. Xu, A. H. Rony, S. Toan, S. Chen, K. A. M. Gasem, H. Adidharma, M. Fan, W. Xiang, Energy Convers. Manag. 2017, 146, 182.

[55]

W. Wang, Y. Yang, D. Huan, L. Wang, N. Shi, Y. Xie, C. Xia, R. Peng, Y. Lu, J. Mater. Chem. A 2019, 7, 12538.

[56]

T. H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Electrochim. Acta 2015, 184, 483.

[57]

M. Saccoccio, T. H. Wan, C. Chen, F. Ciucci, Electrochim. Acta 2014, 147, 470.

[58]

Y. Zhang, N. Xu, Q. Tang, K. Huang, J. Electrochem. Soc. 2022, 169, 34516.

[59]

X. Jin, K. Huang, J. Electrochem. Soc. 2020, 167, 124501.

Energy & Environmental Materials
Article number: e12715
Cite this article:
Wang W, Li H, Park K-Y, et al. Enhancing Direct Electrochemical CO2 Electrolysis by Introducing A-Site Deficiency for the Dual-Phase Pr(Ca)Fe(Ni)O3−δ Cathode. Energy & Environmental Materials, 2024, 7(5): e12715. https://doi.org/10.1002/eem2.12715

16

Views

1

Downloads

7

Crossref

7

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 02 November 2023
Revised: 05 December 2023
Published: 20 December 2023
© 2024 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return