PDF (2.1 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article | Open Access

High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen Oxidation

Pan Li1,2Jiang Zhong2Yanqing Fu2Zhentao Du1()Lan Jiang2Yi Han2Jan Luxa3Bing Wu3Zdenek Sofer3Qiliang Wei2 ()Weiyou Yang2 ()
School of Resources, Environment and Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, China
Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
Show Author Information

Abstract

Anion exchange membrane fuel cell (AEMFC) technology is attracting intensive attention, due to its great potential by using non-precious-metal catalysts (NPMCs) in the cathode and cheap bipolar plate materials in alkaline media. However, in such case, the kinetics of hydrogen oxidation reaction (HOR) in the anode is two orders of magnitude sluggish than that of acidic electrolytes, which is recognized as the grand challenge in this field. Herein, we report the rationally designed Ni nanoparticles encapsulated by N-doped graphene layers (Ni@NG) using a facile pyrolysis strategy. Based on the density functional theory calculations and electrochemical performance analysis, it is witnessed that the rich Pyridinic-N within the graphene shell optimizes the binding energy of the intermediates, thus enabling the fundamentally enhanced activity for HOR with robust stability. As a proof of concept, the resultant Ni@NG sample as the anode with a low loading (1.8 mg cm−2) in AEMFCs delivers a high peak power density of 500 mW cm−2, outperforming all of those of NPMC-based analogs ever reported.

Electronic Supplementary Material

Download File(s)
eem-7-5-e12716_ESM.docx (10.7 MB)

References

[1]

Y. Wang, Y. Pang, H. Xu, A. Martinez, K. S. Chen, Energy Environ. Sci. 2022, 15, 2288.

[2]

Q. Zhang, J. Guan, Energy Environ. Mater. 2021, 4, 307.

[3]

D. A. Cullen, K. Neyerlin, R. K. Ahluwalia, R. Mukundan, K. L. More, R. L. Borup, A. Z. Weber, D. J. Myers, A. Kusoglu, Nat. Energy 2021, 6, 462.

[4]

X. Meng, X. Deng, L. Zhou, B. Hu, W. Tan, W. Zhou, M. Liu, Z. Shao, Energy Environ. Mater. 2021, 4, 126.

[5]

K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, S. Huo, N. P. Brandon, Y. Yin, M. D. Guiver, Nature 2021, 595, 361.

[6]

X. Wu, N. Chen, H. A. Klok, Y. M. Lee, X. Hu, Angew. Chem. Int. Ed. 2022, 134, e202114892.

[7]

H. Adabi, A. Shakouri, N. U. Hassan, J. R. Varcoe, B. Zulevi, A. Serov, J. R. Regalbuto, W. E. Mustain, Nat. Energy 2021, 6, 834.

[8]

N. Ramaswamy, S. Mukerjee, Chem. Rev. 2019, 119, 11945.

[9]

M. M. Hossen, M. S. Hasan, M. R. I. Sardar, J. B. Haider, K. Tammeveski, P. Atanassov, Appl. Catal., B 2022, 325, 121733.

[10]

Q. Wei, X. Cao, P. Veh, A. Konovalova, P. Mardle, P. Overton, S. Cassegrain, S. Vierrath, M. Breitwieser, S. Holdcroft, Sustainable Energy Fuels 2022, 6, 3551.

[11]

Y. Yang, P. Li, X. Zheng, W. Sun, S. X. Dou, T. Ma, H. Pan, Chem. Soc. Rev. 2022, 51, 9620.

[12]

Y. Men, X. Su, P. Li, Y. Tan, C. Ge, S. Jia, L. Li, J. Wang, G. Cheng, L. Zhuang, S. Chen, W. Luo, J. Am. Chem. Soc. 2022, 144, 12661.

[13]

Q. Wei, M. Cherif, G. Zhang, A. Almesrati, J. Chen, M. Wu, N. Komba, Y. Hu, T. Regier, T.-K. Sham, F. Vidal, S. Sun, Nano Energy, 2019, 62, 700.

[14]

M. Rauf, J. Wang, S. Handschuh-Wang, Z. Zhou, W. Iqbal, S. A. Khan, L. Zhuang, X. Ren, Y. Li, S. Sun, Prog. Nat. Sci.: Mater. Int. 2022, 32, 27.

[15]

S. Hou, H. Wang, J. Ren, C. Yao, L. Shi, S. Liao, Prog. Nat. Sci.: Mater. Int. 2022, 32, 150.

[16]

L. Su, D. Gong, Y. Jin, D. Wu, W. Luo, J. Energy Chem. 2022, 66, 107.

[17]

Z.-C. Yao, T. Tang, Z. Jiang, L. Wang, J.-S. Hu, L.-J. Wan, ACS Nano 2022, 16, 5153.

[18]

F.-Y. Gao, M.-R. Gao, Acc. Chem. Res. 2023, 56, 1445.

[19]

A. Roy, M. R. Talarposhti, S. J. Normile, I. V. Zenyuk, V. De Andrade, K. Artyushkova, A. Serov, P. Atanassov, Sustainable Energy Fuels 2018, 2, 2268.

[20]

M. Wang, H. Yang, J. Shi, Y. Chen, Y. Zhou, L. Wang, S. Di, X. Zhao, J. Zhong, T. Cheng, W. Zhou, Y. Li, Angew. Chem. Int. Ed. 2021, 133, 5835.

[21]

B. Xiong, W. Zhao, H. Tian, W. Huang, L. Chen, J. Shi, Chem. Eng. J. 2022, 432, 134189.

[22]

Y. Duan, Z.-Y. Yu, L. Yang, L.-R. Zheng, C.-T. Zhang, X.-T. Yang, F.-Y. Gao, X.-L. Zhang, X. Yu, R. Liu, H.-H. Ding, C. Gu, X.-S. Zheng, L. Shi, J. Jiang, J.-F. Zhu, M.-R. Gao, S.-H. Yu, Nat. Commun. 2020, 11, 4789.

[23]

S. Qin, Y. Duan, X.-L. Zhang, L.-R. Zheng, F.-Y. Gao, P.-P. Yang, Z.-Z. Niu, R. Liu, Y. Yang, X.-S. Zheng, J.-F. Zhu, M.-R. Gao, Nat. Commun. 2021, 12, 2686.

[24]

F.-Y. Gao, S.-N. Liu, J.-C. Ge, X.-L. Zhang, L. Zhu, Y.-R. Zheng, Y. Duan, S. Qin, W. Dong, X. Yu, R.-C. Bao, P.-P. Yang, Z.-Z. Niu, Z.-G. Ding, W. Liu, S. Lan, M.-R. Gao, Y. Yan, S.-H. Yu, Nat. Catal. 2022, 5, 993.

[25]

X. Zhao, X. Li, L. An, L. Zheng, J. Yang, D. Wang, Angew. Chem. Int. Ed. 2022, 61, e202206588.

[26]

L. Su, D. Gong, N. Yao, Y. Li, Z. Li, W. Luo, Adv. Funct. Mater. 2021, 31, 2106156.

[27]

X. Zhao, X. Li, L. An, K. Iputera, J. Zhu, P. Gao, R.-S. Liu, Z. Peng, J. Yang, D. Wang, Energy Environ. Sci. 2022, 15, 1234.

[28]

W. Ni, T. Wang, F. Héroguel, A. Krammer, S. Lee, L. Yao, A. Schüler, J. S. Luterbacher, Y. Yan, X. Hu, Nat. Mater. 2022, 21, 804.

[29]

F. Yang, X. Bao, P. Li, X. Wang, G. Cheng, S. Chen, W. Luo, Angew. Chem. Int. Ed. 2019, 58, 14179.

[30]

Y. Yang, X. Sun, G. Han, X. Liu, X. Zhang, Y. Sun, M. Zhang, Z. Cao, Y. Sun, Angew. Chem. Int. Ed. 2019, 58, 10644.

[31]

F. Yang, P. Han, N. Yao, G. Cheng, S. Chen, W. Luo, Chem. Sci. 2020, 11, 12118.

[32]

L. Gao, Y. Wang, H. Li, Q. Li, N. Ta, L. Zhuang, Q. Fu, X. Bao, Chem. Sci. 2017, 8, 5728.

[33]

R. Ren, C. Ge, Q. Li, G. Wang, L. Xiao, J. Lu, L. Zhuang, J. Power Sources 2023, 556, 232439.

[34]

Y. Gao, H. Peng, Y. Wang, G. Wang, L. Xiao, J. Lu, L. Zhuang, ACS Appl. Mater. Interfaces 2020, 12, 31575.

[35]

Y. Gao, Y. Yang, R. Schimmenti, E. Murray, H. Peng, Y. Wang, C. Ge, W. Jiang, G. Wang, F. J. DiSalvo, D. A. Muller, M. Mavrikakis, L. Xiao, H. D. Abruña, L. Zhuang, Proc. Natl. Acad. Sci. USA 2022, 119, e2119883119.

[36]

J. Wang, X. Dong, J. Liu, W. Li, L. T. Roling, J. Xiao, L. Jiang, ACS Catal. 2021, 11, 7422.

[37]

Y. Xu, W. Tu, B. Zhang, S. Yin, Y. Huang, M. Kraft, R. Xu, Adv. Mater. 2017, 29, 1605957.

[38]

T. Wang, Q. Zhou, X. Wang, J. Zheng, X. Li, J. Mater. Chem. A 2015, 3, 16435.

[39]
J. K. Nørskov, F. Studt, F. Abild-Pedersen, T. Bligaard, Fundamental Concepts in Heterogeneous Catalysis, John Wiley & Sons, Hoboken, NJ 2014.
[40]

A. J. Medford, P. G. Moses, K. W. Jacobsen, A. A. Peterson, ACS Catal. 2022, 12, 9679.

[41]

L. Su, Y. Jin, D. Gong, X. Ge, W. Zhang, X. Fan, W. Luo, Angew. Chem. Int. Ed. 2023, 135, e202215585.

[42]

J.-T. Ren, Y.-S. Wang, Y.-J. Song, L. Chen, Z.-Y. Yuan, Appl. Catal., B 2022, 309, 121279.

[43]

C. Sun, P. Zhao, Y. Yang, Z. Li, W. Sheng, ACS Catal. 2022, 12, 11830.

[44]

D. Strmcnik, K. Kodama, D. V. D. van der Vliet, J. Greeley, V. R. Stamenkovic, N. Marković, Nat. Chem. 2009, 1, 466.

[45]

J. Zheng, J. Nash, B. Xu, Y. Yan, J. Electrochem. Soc. 2018, 165, H27.

[46]

Y. Xue, L. Shi, X. Liu, J. Fang, X. Wang, B. P. Setzler, W. Zhu, Y. Yan, Z. Zhuang, Nat. Commun. 2020, 11, 5651.

[47]

X. Tian, P. Zhao, W. Sheng, Adv. Mater. 2019, 31, 1808066.

[48]

B. Zhang, B. Zhang, G. Zhao, J. Wang, D. Liu, Y. Chen, L. Xia, M. Gao, Y. Liu, W. Sun, H. Pan, Nat. Commun. 2022, 13, 5894.

Energy & Environmental Materials
Article number: e12716
Cite this article:
Li P, Zhong J, Fu Y, et al. High-Performance Anion Exchange Membrane Fuel Cells Enabled by Nitrogen Configuration Optimization in Graphene-Coated Nickel for Enhanced Hydrogen Oxidation. Energy & Environmental Materials, 2024, 7(5): e12716. https://doi.org/10.1002/eem2.12716
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return