AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Rapid Fabrication of Electrodes for Symmetrical Solid Oxide Cells by Extreme Heat Treatment

Weiwei Fan1,2( )Zhu Sun3,4( )Manxi Wang5Manxian Li5Yuming Chen5( )
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai 201210, China
College of Environmental Science and Engineering and College of Physics and Energy, Fujian Normal University, Fuzhou 350000, China
Show Author Information

Abstract

Symmetrical solid oxide cells (SSOCs) are very useful for energy generation and conversion. To fabricate the electrode of SSOC, it is very time-consuming to use the conventional approach. In this work, we design and develop a novel method, extreme heat treatment (EHT), to rapidly fabricate electrodes for SSOC. We show that by using the EHT method, the electrode can be fabricated in seconds (the fastest method to date), benefiting from enhanced reaction kinetics. The EHT-fabricated electrode presents a porous structure and good adhesion with the electrolyte. In contrast, tens of hours are needed to prepare the electrode by the conventional approach, and the prepared electrode exhibits a dense structure with a larger particle size due to the lengthy treatment. The EHT-fabricated electrode shows desirable electrochemical performance. Moreover, we show that the electrocatalytic activity of the perovskite electrode can be tuned by the vigorous approach of fast exsolution, deriving from the increased active sites for enhancing the electrochemical reactions. At 900 ℃, a promising peak power density of 966 mW cm−2 is reached. Our work exploits a new territory to fabricate and develop advanced electrodes for SSOCs in a rapid and high-throughput manner.

Electronic Supplementary Material

Download File(s)
eem-7-5-e12718_ESM.docx (4.5 MB)

References

[1]

Y. Zhang, B. Chen, D. Guan, M. Xu, R. Ran, M. Ni, W. Zhou, R. O’Hayre, Z. Shao, Nature 2021, 591, 246.

[2]

J. H. Myung, D. Neagu, D. N. Miller, J. T. S. Irvine, Nature 2016, 537, 528.

[3]

J. T. S. Irvine, D. Neagu, M. C. Verbraeken, C. Chatzichristodoulou, C. Graves, M. B. Mogensen, Nat. Energy 2016, DOI: 10.1038/nenergy.2015.14.

[4]

M. Papac, V. Stevanovi, A. Zakutayev, R. O’Hayre, Nat. Mater. 2021, 20, 301.

[5]

P. Boldrin, N. P. Brandon, Nat. Catal. 2019, 2, 571.

[6]

E. D. Wachsman, K. T. Lee, Science 2011, 334, 935.

[7]

S. B. Adler, Chem. Rev. 2004, 104, 4791.

[8]

S. Joo, O. Kwon, K. Kim, S. Kim, H. Kim, J. Shin, H. Y. Jeong, S. Sengodan, J. W. Han, G. Kim, Nat. Commun. 2019, 10, 697.

[9]

Z. Sun, W. Fan, Y. Bai, K. Wu, Y. Cheng, ACS Appl. Mater. Interfaces 2021, 13, 29755.

[10]

K. Develos-Bagarinao, T. Ishiyama, H. Kishimoto, H. Shimada, K. Yamaji, Nat. Commun. 2021, DOI: 10.1038/s41467-021-24255-w.

[11]

B. Hua, M. Li, Y. F. Sun, J. H. Li, J. L. Luo, ChemSusChem 2017, 10, 3333.

[12]

G. Tsekouras, D. Neagu, J. T. S. Irvine, Energ. Environ. Sci. 2013, 6, 256.

[13]

J. Zhou, T. H. Shin, C. Ni, G. Chen, K. Wu, Y. Cheng, J. T. S. Irvine, Chem. Mater. 2016, 28, 2981.

[14]

W. W. Fan, Z. Sun, J. Wang, J. Zhou, K. Wu, Y. Cheng, J. Power Sources 2016, 312, 223.

[15]

S. Choi, S. Sengodan, S. Park, Y. W. Ju, J. Kim, J. Hyodo, H. Y. Jeong, T. Ishihara, J. Shin, G. Kim, J. Mater. Chem. A 2016, 4, 1747.

[16]

W. W. Fan, Z. Sun, Y. Bai, K. Wu, Y. H. Cheng, ACS Appl. Mater. Interfaces 2019, 11, 23168.

[17]

W. W. Fan, Z. Sun, J. Zhou, K. Wu, Y. H. Cheng, J. Power Sources 2017, 348, 94.

[18]

Y. Chen, B. de Glee, Y. Tang, Z. Wang, B. Zhao, Y. Wei, L. Zhang, S. Yoo, K. Pei, J. H. Kim, Y. Ding, P. Hu, F. F. Tao, M. Liu, Nat. Energy 2018, 3, 1042.

[19]

B. Hua, M. Li, W. Pang, W. Tang, S. Zhao, Z. Jin, Y. Zeng, B. Shalchi Amirkhiz, J. L. Luo, Chem 2018, 4, 2902.

[20]

M. Kothari, Y. Jeon, D. N. Miller, A. E. Pascui, J. Kilmartin, D. Wails, S. Ramos, A. Chadwick, J. T. S. Irvine, Nat. Chem. 2021, 13, 677.

[21]

D. Neagu, G. Tsekouras, D. N. Miller, H. Menard, J. T. S. Irvine, Nat. Chem. 2013, 5, 916.

[22]

C. P. Li, M. Qiu, R. Li, X. Li, M. Wang, J. He, G. Lin, L. Xiao, Q. Qian, Q. Chen, J. Wu, X. Li, Y.-W. Mai, Y. Chen, Adv. Fiber Mater. 2021, 4, 43.

[23]

Q. F. Li, D. Yang, H. Chen, X. Lv, Y. Jiang, Y. Feng, X. Rui, Y. Yu, SusMat 2021, 1, 359.

[24]

T. L. Zhu, H. E. Troiani, L. V. Mogni, M. F. Han, S. A. Barnett, Joule 2018, 2, 478.

[25]

Y. H. Huang, R. I. Dass, Z. L. Xing, J. B. Goodenough, Science 2006, 312, 254.

[26]

A. Zarkov, A. Stanulis, J. Sakaliuniene, S. Butkute, B. Abakeviciene, T. Salkus, S. Tautkus, A. F. Orliukas, S. Tamulevicius, A. Kareiva, J. Sol-Gel Sci. Technol. 2015, 76, 309.

[27]

S. M. Logvinkov, G. D. Semchenko, D. A. Kobyzeva, V. I. Babushkin, Refract. Ind. Ceram. 2001, 42, 434.

[28]

B. Schuh, B. Völker, J. Todt, N. Schell, L. Perrière, J. Li, J. P. Couzinié, A. Hohenwarter, Acta Mater. 2018, 142, 201.

[29]

Y. G. Yao, Z. Huang, P. Xie, S. D. Lacey, R. J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, D. Yu, M. R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, L. Hu, Science 2018, 359, 1489.

[30]

R. J. H. Voorhoeve, D. W. Johnson, J. P. Remeika, P. K. Gallagher, Science 1977, 195, 827.

[31]

S. B. Liu, Q. X. Liu, J. L. Luo, ACS Catal. 2016, 6, 6219.

[32]

J. Yu, R. Ran, Y. Zhong, W. Zhou, M. Ni, Z. Shao, Energy Environ. Mater. 2020, 3, 121.

[33]

O. Celikbilek, C. A. Thieu, F. Agnese, E. Calì, C. Lenser, N. H. Menzler, J. W. Son, S. J. Skinner, E. Djurado, J. Mater. Chem. A 2019, 7, 25102.

[34]

I. Jang, S. Kim, C. Kim, H. Yoon, T. Song, J. Power Sources 2018, 392, 123.

[35]

Z. Q. Cao, Y. Zhang, J. Miao, Z. Wang, Z. Lü, Y. Sui, X. Huang, W. Jiang, Int. J. Hydrogen Energy 2015, 40, 16572.

[36]

R. Martínez-Coronado, A. Aguadero, D. Pérez-Coll, L. Troncoso, J. A. Alonso, M. T. Fernández-Díaz, Int. J. Hydrogen Energy 2012, 37, 18310.

[37]

W. D. Li, Y. Cheng, Q. Zhou, T. Wei, Z. Li, H. Yan, Z. Wang, X. Han, Ceram. Int. 2015, 41, 12393.

[38]

D. Papargyriou, J. T. S. Irvine, Solid State Ion. 2016, 288, 120.

[39]

Y. F. Sun, J. H. Li, L. Cui, B. Hua, S. H. Cui, J. Li, J. L. Luo, Nanoscale 2015, 7, 11173.

[40]

D. E. Fowler, A. C. Messner, E. C. Miller, B. W. Slone, S. A. Barnett, K. R. Poeppelmeier, Chem. Mater. 2015, 27, 3683.

[41]

L. F. Chen, J. A. Wang, M. A. Valenzuela, X. Bokhimi, D. R. Acosta, O. Novaro, J. Alloys Compd. 2006, 417, 220.

[42]

Y. F. Sun, Y. Q. Zhang, J. Chen, J. H. Li, Y. T. Zhu, Y. M. Zeng, B. S. Amirkhiz, J. Li, B. Hua, J. L. Luo, Nano Lett. 2016, 16, 5303.

[43]

Y. F. Sun, J. H. Li, L. Cui, B. Hua, S. H. Cui, J. Li, J. L. Luo, Nanoscale 2017, 9, 947.

[44]

A. Leonide, V. Sonn, A. Weber, E. Ivers-Tiffée, J. Electrochem. Soc. 2008, 155, B36.

[45]

M. F. Camellone, F. N. Ribeiro, L. Szabova, Y. Tateyama, S. Fabris, J. Am. Chem. Soc. 2016, 138, 11560.

[46]

M. Cargnello, V. V. T. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero, C. B. Murray, Science 2013, 341, 771.

[47]

H. Han, J. Park, S. Y. Nam, K. J. Kim, G. M. Choi, S. S. P. Parkin, H. M. Jang, J. T. S. Irvine, Nat. Commun. 2019, DOI: 10.1038/s41467-019-09395-4.

[48]

O. Kwon, S. Sengodan, K. Kim, G. Kim, H. Y. Jeong, J. Shin, Y.-W. Ju, J. W. Han, G. Kim, Nat. Commun. 2017, DOI: 10.1038/ncomms15967.

[49]

D. Neagu, V. Kyriakou, I. L. Roiban, M. Aouine, C. Tang, A. Caravaca, K. Kousi, I. Schreur-Piet, I. S. Metcalfe, P. Vernoux, M. C. M. van de Sanden, M. N. Tsampas, ACS Nano 2019, 13, 12996.

[50]

Y. Zhu, J. Dai, W. Zhou, Y. Zhong, H. Wang, Z. Shao, J. Mater. Chem. A 2018, 6, 13582.

[51]

H. Y. Zhu, R. J. Kee, V. M. Janardhanan, O. Deutschmann, D. G. Goodwin, J. Electrochem. Soc. 2005, 152, 2427.

[52]

Y. Choi, S. K. Cha, H. Ha, S. Lee, H. K. Seo, J. Y. Lee, H. Y. Kim, S. O. Kim, W. C. Jung, Nat. Nanotechnol. 2019, 14, 245.

[53]

K. J. Kim, M. K. Rath, H. H. Kwak, H. J. Kim, J. W. Han, S. T. Hong, K. T. Lee, ACS Catal. 2019, 9, 1172.

Energy & Environmental Materials
Article number: e12718
Cite this article:
Fan W, Sun Z, Wang M, et al. Rapid Fabrication of Electrodes for Symmetrical Solid Oxide Cells by Extreme Heat Treatment. Energy & Environmental Materials, 2024, 7(5): e12718. https://doi.org/10.1002/eem2.12718

29

Views

0

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 August 2023
Revised: 17 December 2023
Published: 25 December 2023
© 2024 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return