AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Dependence of Initial Capacity Irreversibility on Oxygen Framework Chemistry in Li-Rich Layered Cathode Oxides

Xiao Li1,2Yibin Zhang1,2Bao Qiu1,2 ( )Guoxin Chen1Yuhuan Zhou1,2Qingwen Gu1Zhaoping Liu1,2 ( )
Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
College of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
Show Author Information

Abstract

The undesirable capacity loss after first cycle is universal among layered cathode materials, which results in the capacity and energy decay. The key to resolving this obstacle lies in understanding the effect and origin of specific active Li sites during discharge process. In this study, focusing on Ah-level pouch cells for reliability, an ultrahigh initial Coulombic efficiency (96.1%) is achieved in an archetypical Li-rich layered oxide material. Combining the structure and electrochemistry analysis, we demonstrate that the achievement of high-capacity reversibility is a kinetic effect, primarily related to the sluggish Li mobility during oxygen reduction. Activating oxygen reduction through small density would induce the oxygen framework contraction, which, according to Pauli repulsion, imposes a great repulsive force to hinder the transport of tetrahedral Li. The tetrahedral Li storage upon deep oxygen reduction is experimentally visualized and, more importantly, contributes to 6% Coulombic efficiency enhancement as well as 10% energy density improvement for pouch cells, which shows great potentials breaking through the capacity and energy limitation imposed by intercalation chemistry.

Electronic Supplementary Material

Download File(s)
eem-7-5-e12722_ESM.docx (5.5 MB)

References

[1]

M. Armand, J. M. Tarascon, Nature 2008, 451, 652.

[2]

T. H. Kim, J. S. Park, S. K. Chang, S. Choi, J. H. Ryu, H. K. Song, Adv. Energy Mater. 2012, 2, 860.

[3]

G. Assat, J. M. Tarascon, Nat. Energy 2018, 3, 373.

[4]

A. Grenier, P. J. Reeves, H. Liu, I. D. Seymour, K. Marker, K. M. Wiaderek, P. J. Chupas, C. P. Grey, K. W. Chapman, J. Am. Chem. Soc. 2020, 142, 7001.

[5]

K. Märker, P. J. Reeves, C. Xu, K. J. Griffith, C. P. Grey, Chem. Mater. 2019, 31, 2545.

[6]

M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D. R. Baer, J.-G. Zhang, N. D. Browning, J. Liu, A. C. Wang, ACS Nano 2013, 7, 760.

[7]

K. Kleiner, B. Strehle, A. R. Baker, S. J. Day, C. C. Tang, I. Buchberger, F.-F. Chesneau, H. A. Gasteiger, M. Piana, Chem. Mater. 2018, 30, 3656.

[8]

W. Li, A. Dolocan, P. Oh, H. Celio, S. Park, J. Cho, A. Manthiram, Nat. Commun. 2017, 8, 14589.

[9]

Y. Li, L. Weikang, S. Ryosuke, C. Diyi, N. HongNam, P. Jens, K. Shinichi, Z. Minghao, M. Y. Shirley, Adv. Energy Mater. 2022, 12, 2103033.

[10]

J. Kasnatscheew, M. Evertz, B. Streipert, R. Wagner, R. Klopsch, B. Vortmann, H. Hahn, S. Nowak, M. Amereller, A. C. Gentschev, P. Lamp, M. Winter, Phys. Chem. Chem. Phys. 2016, 18, 3956.

[11]

K. Kisuk, C. Ching-Hsiang, B. J. Hwang, C. Gerbrand, Chem. Mater. 2004, 16, 1685.

[12]

D. H. Seo, J. Lee, A. Urban, R. Malik, S. Y. Kang, G. Ceder, Nat. Chem. 2016, 8, 692.

[13]

Y. Xie, M. Saubanère, M. L. Doublet, Energy Environ. Sci. 2017, 10, 266.

[14]

B. Qiu, M. Zhang, L. Wu, J. Wang, Y. Xia, D. Qian, H. Liu, S. Hy, Y. Chen, K. An, Y. Zhu, Z. Liu, Y. S. Meng, Nat. Commun. 2016, 7, 12108.

[15]

Y. Lei, J. Ni, Z. J. Hu, Z. M. Wang, F. K. Gui, B. Li, P. W. Ming, C. M. Zhang, Y. Elias, D. Aurbach, Q. F. Xiao, Adv. Energy Mater 2020, 10, 2002506.

[16]

X. Li, Q. Gu, B. Qiu, C. Yin, Z. Wei, W. Wen, Y. Zhang, Y. Zhou, H. Gao, H. Liang, Z. He, M. Zhang, Y. S. Meng, Z. Liu, Mater. Today 2022, 61, 91.

[17]

A. Boulineau, L. Simonin, J. F. Colin, C. Bourbon, S. Patoux, Nano Lett. 2013, 13, 3857.

[18]

K. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. Pickup, Y. S. Liu, K. Edstrom, J. Guo, A. V. Chadwick, L. C. Duda, P. G. Bruce, Nat. Chem. 2016, 8, 684.

[19]

L. Fang, D. Han, S. Kang, U.-S. Heo, K.-W. Nam, Y.-M. Kang, Energy Environ. Sci. 2023, 16, 3053.

[20]

Y. Zhang, Z. Chen, X. Shi, C. Meng, P. Das, S. Zheng, F. Pan, Z. S. Wu, Adv. Energy Mater. 2022, 13, 2203045.

[21]

H. L. Yu, K. B. Ibrahim, P. W. Chi, Y. H. Su, W. T. Chen, S. C. Tseng, M. T. Tang, C. L. Chen, H. Y. Tang, C. W. Pao, K. H. Chen, M. K. Wu, H. L. Wu, Adv. Funct. Mater. 2022, 32, 2112394.

[22]

J. Song, F. Ning, Y. Zuo, A. Li, H. Wang, K. Zhang, T. Yang, Y. Yang, C. Gao, W. Xiao, Z. Jiang, T. Chen, G. Feng, D. Xia, Adv. Mater. 2022, 35, 2208726.

[23]

J. Zhang, F. Cheng, S. Chou, J. Wang, L. Gu, H. Wang, H. Yoshikawa, Y. Lu, J. Chen, Adv. Mater. 2019, 31, 1901808.

[24]

J. Hwang, S. Myeong, W. Jin, H. Jang, G. Nam, M. Yoon, S. H. Kim, S. H. Joo, S. K. Kwak, M. G. Kim, J. Cho, Adv. Mater. 2020, 32, 2001944.

[25]

T. H. Wu, X. Liu, X. Zhang, Y. Lu, B. Y. Wang, Q. S. Deng, Y. B. Yang, E. Wang, Z. T. Lyu, Y. Q. Li, Y. T. Wang, Y. Lyu, C. F. He, Y. Ren, G. L. Xu, X. L. Sun, A. Khalil, H. J. Yu, Adv. Mater. 2021, 33, 2001358.

[26]

S.-Y. Liu, Y.-H. Zhou, Y.-B. Zhang, S.-J. Xia, Y. Li, X. Zhou, B. Qiu, G.-J. Shao, Z.-P. Liu, Tungsten 2022, 4, 336.

[27]

X. He, J. Wu, Z. Zhu, H. Liu, N. Li, D. Zhou, X. Zhou, H. Zhang, D. Bresser, Y. Fu, M. J. Crafton, B. D. McCloskey, Y. Chen, K. An, P. Liu, A. Jain, J. Li, W. Yang, Y. Yang, M. Winter, R. Kostecki, Energy Environ. Sci. 2022, 15, 4137.

[28]

Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 2015, 44, 5926.

[29]

J. Ni, A. Dai, Y. Yuan, L. Li, J. Lu, Matter 2020, 2, 1366.

[30]

G. Assat, C. Delacourt, D. A. D. Corte, J.-M. Tarascon, J. Electrochem. Soc. 2016, 163, A2965.

[31]

G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvere, J. M. Tarascon, Nat. Commun. 2017, 8, 2219.

[32]

K. S. Kang, Y. S. Meng, J. Breger, C. P. Grey, G. Ceder, Science 2006, 311, 977.

[33]

J. Lee, A. Urban, X. Li, D. Su, G. Hautier, G. Ceder, Science 2014, 343, 519.

[34]

Y. Wei, J. X. Zheng, S. H. Cui, X. H. Song, Y. T. Su, W. J. Deng, Z. Z. Wu, X. W. Wang, W. D. Wang, M. M. Rao, Y. Lin, C. M. Wang, K. Amine, F. Pan, J. Am. Chem. Soc. 2015, 137, 8364.

[35]

R. A. House, G. J. Rees, K. McColl, J.-J. Marie, M. Garcia-Fernandez, A. Nag, K.-J. Zhou, S. Cassidy, B. J. Morgan, M. Saiful Islam, P. G. Bruce, Nat. Energy 2023, 8, 351.

[36]

M. Sathiya, G. Rousse, K. Ramesha, C. P. Laisa, H. Vezin, M. T. Sougrati, M. L. Doublet, D. Foix, D. Gonbeau, W. Walker, A. S. Prakash, M. Ben Hassine, L. Dupont, J. M. Tarascon, Nat. Mater. 2013, 12, 827.

[37]

C. Yin, Z. Wei, M. Zhang, B. Qiu, Y. Zhou, Y. Xiao, D. Zhou, L. Yun, C. Li, Q. Gu, W. Wen, X. Li, X. Wen, Z. Shi, L. He, Y. Shirley Meng, Z. Liu, Mater. Today 2021, 51, 15.

[38]

R. A. House, H. Y. Playford, R. I. Smith, J. Holter, I. Griffiths, K.-J. Zhou, P. G. Bruce, Energy Environ. Sci. 2022, 15, 376.

[39]

Y. Zhou, H. Cui, B. Qiu, Y. Xia, C. Yin, L. Wan, Z. Shi, Z. Liu, ACS Mater. Lett. 2021, 3, 433.

[40]

B. Qiu, M. Zhang, S.-Y. Lee, H. Liu, T. A. Wynn, L. Wu, Y. Zhu, W. Wen, C. M. Brown, D. Zhou, Z. Liu, Y. S. Meng, Cell. Rep. Phys. Sci. 2020, 1, 100028.

[41]

Z. Wei, Z. Shi, X. Wen, X. Li, B. Qiu, Q. Gu, J. Sun, Y. Han, H. Luo, H. Guo, Y. Xia, C. Yin, P. Cai, Z. Liu, Mater. Today Energy 2022, 27, 101039.

[42]

R. A. House, G. J. Rees, M. A. Pérez Osorio, J. J. Marie, E. Boivin, A. W. Robertson, A. Nag, M. Garcia Fernandez, K. J. Zhou, P. G. Bruce, Nat. Energy 2020, 5, 777.

[43]

C. Cui, X. Fan, X. Zhou, J. Chen, Q. Wang, L. Ma, C. Yang, E. Hu, X. Q. Yang, C. Wang, J. Am. Chem. Soc. 2020, 142, 8918.

[44]

Y. Li, Z. Shi, B. Qiu, J. Zhao, X. Li, Y. Zhang, T. Li, Q. Gu, J. Gao, Z. Liu, Adv. Funct. Mater. 2023, 33, 2302236.

[45]

Z. Shi, Q. Gu, L. Yun, Z. Wei, D. Hu, B. Qiu, G. Z. Chen, Z. Liu, J. Mater. Chem. A 2021, 9, 24426.

[46]

L. Zeng, H. Liang, B. Qiu, Z. Shi, S. Cheng, K. Shi, Q. Liu, Z. Liu, Adv. Funct. Mater 2023, 33, 2213260.

[47]

C. Yin, X. Wen, L. Wan, Z. Shi, Z. Wei, X. Li, Q. Gu, B. Qiu, Z. Liu, J. Power Sources 2021, 503, 230048.

[48]

P. Yan, J. Zheng, J. G. Zhang, C. Wang, Nano Lett. 2017, 17, 3946.

[49]

L. Li, E. C. Self, D. Darbar, L. Zou, I. Bhattacharya, D. Wang, J. Nanda, C. Wang, Nano Lett. 2020, 20, 2756.

[50]

D. Qian, B. Xu, M. Chi, Y. S. Meng, Phys. Chem. Chem. Phys. 2014, 16, 14665.

[51]

W. Huang, L. Yang, Z. Chen, T. Liu, G. Ren, P. Shan, B. W. Zhang, S. Chen, S. Li, J. Li, C. Lin, W. Zhao, J. Qiu, J. Fang, M. Zhang, C. Dong, F. Li, Y. Yang, C. J. Sun, Y. Ren, Q. Huang, G. Hou, S. X. Dou, J. Lu, K. Amine, F. Pan, Adv. Mater. 2022, 34, 2202745.

[52]

X. Q. Yu, Y. C. Lyu, L. Gu, H. M. Wu, S. M. Bak, Y. N. Zhou, K. Amine, S. N. Ehrlich, H. Li, K. W. Nam, X. Q. Yang, Adv. Energy Mater 2014, 4, 1300950.

[53]

E. Y. Hu, X. Q. Yu, R. Q. Lin, X. X. Bi, J. Lu, S. Bak, K. W. Nam, H. L. Xin, C. Jaye, D. A. Fischer, K. Amine, X. Q. Yang, Nat. Energy 2018, 3, 690.

[54]

G. Liang, C. Didier, Z. Guo, W. K. Pang, V. K. Peterson, Adv. Mater. 2020, 32, 1904528.

[55]

H. Liu, Y. Chen, S. Hy, K. An, S. Venkatachalam, D. Qian, M. Zhang, Y. S. Meng, Adv. Energy Mater. 2016, 6, 1502143.

[56]

J. Reed, G. Ceder, Chem. Rev. 2004, 104, 4513.

[57]

E. Lee, W. Lee, H. Kim, M. Kim, S. Yun, J. Kim, W.-S. Yoon, ACS Energy Lett. 2023, 8, 707.

[58]

W. Zhang, D.-H. Seo, T. Chen, L. Wu, M. Topsakal, Y. Zhu, D. Lu, G. Ceder, F. Wang, Science 2020, 367, 1030.

[59]

M. Zhang, B. Qiu, J. M. Gallardo-Amores, M. Olguin, H. Liu, Y. Li, C. Yin, S. Jiang, W. Yao, M. E. Arroyo-de Dompablo, Z. Liu, Y. S. Meng, Matter 2020, 4, 164.

[60]

B. H. Toby, R. B. Von Dreele, J. Appl. Crystallogr. 2013, 46, 544.

[61]

B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537.

Energy & Environmental Materials
Article number: e12722
Cite this article:
Li X, Zhang Y, Qiu B, et al. Dependence of Initial Capacity Irreversibility on Oxygen Framework Chemistry in Li-Rich Layered Cathode Oxides. Energy & Environmental Materials, 2024, 7(5): e12722. https://doi.org/10.1002/eem2.12722

38

Views

0

Downloads

7

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 05 September 2023
Revised: 19 December 2023
Published: 01 January 2024
© 2024 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return